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Abstract

We propose a semiparametric approach to disentangling the autocovariance of equity returns

at high frequency. We assume the observed price consists of an efficient component that

follows a nonparametric continuous-time Itô-semimartingale, along with a market microstructure

component that follows a discrete-time moving-average model. Our quasi-likelihood procedure

relies on a misspecified moving-average model selected by information criteria. We establish the

model-selection consistency, provide a central limit theory on autocovariance parameters, and

show their consistency uniformly over a large class of models that allow for an arbitrary noise

magnitude and a flexible dependence structure. We also provide a quadratic representation

of the likelihood estimator, which sheds light on its connection with nonparametric kernel

estimators. Our simulation evidence suggests that our estimator outperforms the nonparametric

alternatives particularly when noise magnitude is small. We apply this estimator to S&P 1500

index constituents, and find that in recent years the microstructure friction has become smaller

but existed in 5-minute returns, particularly in small caps, and that the average duration of

autocorrelations for large caps has shrunk considerably to merely 10 seconds.
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1 Introduction

Autocorrelations in stock returns are ubiquitous. The earlier literature regards such autocorrela-

tions as evidence against market efficiency. Nonetheless, as market efficiency has improved over past

decades, autocorrelations have remained a salient feature of intraday stock returns sampled at suffi-

ciently high frequencies. The modern view of such autocorrelations is that they arise from market

microstructure frictions, such as bid-ask bounces, nonsynchronous trading, price discreteness, etc,

which coalesce into efficient equilibrium prices and lead to the convoluted dynamics of returns.

To disentangle the observed autocorrelations in intraday returns, we model the transaction price

as a discretized continuous-time semimartingale process plus a discrete-time moving-average process.

The former represents the efficient price process that features return heteroscedasticity in the form

of stochastic volatility and jumps, but does not contribute to any autocovariance; the latter serves as

a reduced-form description of the microstructure friction that is the main driver behind the observed

autocovariances.

To conduct inference on various model components and parameters, we construct a tractable

quasi-maximum likelihood estimator (QMLE), pretending that the transaction price arrives regularly

and comprises a Brownian motion with constant volatility and an MA(q) noise. We select q based on

the Akaike/Bayesian information criteria (AIC/BIC). While our estimator shares the same likelihood

with that from an MA(q+ 1) model, our asymptotic design is in-fill, i.e., the number of observations

increases within a fixed window–say, a trading day–which renders our analysis rather different from

the usual long-span asymptotics in the classic time-series setting.

In a related paper, Da and Xiu (2021) show how to conduct uniformly valid inference on volatility

over a large class of MA(∞) models that allow for an asymptotically vanishing noise with a flexible

dependence structure. In this paper, our main objective is to develop asymptotic properties of the

estimator for noise parameters. When the noise data-generating process (DGP) follows a finite-order

moving-average model, we show that our quasi-likelihood estimator, combined with BIC, recovers

the true model asymptotically, is consistent with respect to the noise parameters, and achieves a

pointwise central limit theory at the usual rate of n1/2. Moreover, we develop uniform consistency

results when noise follows an MA(∞) process. As alternatives to our semiparametric approach,

Jacod, Li, and Zheng (2017) and Li and Linton (2021) provide nonparametric estimators of the

serial correlations of the microstructure noise based on local averaging and differencing strategies,

respectively. They focus on the case in which noise is large, whereas we also allow for vanishing

noise. More importantly, our likelihood-based approach provides a benchmark on the efficiency of

noise parameters.

We apply our estimator to analyze all intraday returns of S&P 1,500 index constituents from

1996 to 2016. Several interesting findings emerge. The microstructure noise is present in 5-minute

returns, at least for small and mid caps, though it is an order of magnitude smaller in recent years

than at the beginning of the sample, thanks to the improvement in market efficiency. For a sizable
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portion of stock-day pairs, it appears that the noise is either absent or approximately follows an i.i.d.

assumption. For the remaining stocks with autocorrelated noise, the duration of autocorrelations

has been on the decline, from several minutes in 1996 to merely 10 seconds on average for large caps

and 100 seconds for small caps in 2016.

Empirical evidence of autocorrelations in the returns of transaction prices goes back to as early as

Niederhoffer and Osborne (1966), Simmons (1971), and Garbade and Lieber (1977). Among others,

Hasbrouck and Ho (1987) document positive autocorrelations in intraday stock returns, in returns of

quote midpoints, and in the arrival of buy and sell orders. They thus propose a model of the return-

generating process, which is observationally equivalent to an ARMA(2, 2) model. While classical

time-series models such as ARMA are convenient for dependent data, they are not appropriate for

intraday returns because of the heteroscedasticity in returns.

Why do higher-order autocorrelations of returns exist? There are many economic hypotheses,

such as strategic order splitting (Garbade and Lieber (1977)); optimal control of execution cost

(Bertsimas and Lo (1998)); price impact and inventory control (Kyle (1985), Amihud and Mendelson

(1980)); the crowd effect or herding (Tóth, Palit, Lillo, and Farmer (2015)); and high-frequency

trading Brogaard, Hendershott, and Riordan (2014). Our objective here is modest. We aim to

estimate parameters in a general class of reduced-form models, since many structural economic

models yield specific reduced-form models–see, for example, Hasbrouck (2007)–with differences only

in how the reduced-form parameters relate to structural parameters.

There is an enormous literature on the estimation of quadratic variation or its components using

noisy high-frequency data; e.g., the two-scale or multi-scale estimators by Zhang, Mykland, and

Aı̈t-Sahalia (2005) and Zhang (2006); the realized kernel estimator and its extensions by Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2008) and Barndorff-Nielsen, Hansen, Lunde, and Shephard

(2011); the pre-averaging estimator by Jacod, Li, Mykland, Podolskij, and Vetter (2009) and Jacod,

Podolskij, and Vetter (2010); the quasi-maximum likelihood estimator (QMLE) by Xiu (2010); and

the local method of moments estimator by Reiß (2011). An “essentially” white noise assumption is

most common in this strand of the literature, with the exception of Jacod, Li, and Zheng (2019),

Varneskov (2016), and Da and Xiu (2021), who tackle general colored-noise processes for the purpose

of volatility estimation. Related work also include Aı̈t-Sahalia, Mykland, and Zhang (2005), Aı̈t-

Sahalia, Mykland, and Zhang (2011), Kalnina and Linton (2008), and Bibinger, Hautsch, Malec, and

Reiß (2019). Unlike the above papers, which treat noise as nuisance parameters in the estimation of

quadratic variation, our target here is mainly the temporal dependence of intraday returns beyond

the first-order autocorrelations. Chang, Delaigle, Hall, and Tang (2018) also focus on analyzing

the statistical properties of the noise process and propose an estimator of noise density and noise

moments in an i.i.d. noise setting.

The paper is organized as follows. Section 2 sets up the model. Section 3 introduces the esti-

mator and provides the main asymptotic results. Section 4 reports Monte Carlo simulations. We

analyze volatilities and noise for S&P Composite 1,500 index constituents in Section 5, and Section
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6 concludes. The online supplemental appendix contains all mathematical proofs.

2 Model Assumptions

We assume that transaction prices X̃ are observed at ti, for i = 1, 2, . . . , nT , within a fixed window

[0, T ]. They comprise two components: X̃ti = Xti + Ui, where Xti is (the logarithm of) the efficient

equilibrium price and Ui is the microstructure noise associated with the ith observation. Furthermore,

the efficient price satisfies:

Assumption 1. The logarithm of the efficient price process Xt is an Itô-semimartingale defined on

some filtered probability space (Ω,F , (Ft),P) and satisfies

Xt = X0 +

∫ t

0
µsds+

∫ t

0
σsdWs + (δ1{|δ|≤1}) ? (µ− ν)t + (δ1{|δ|>1}) ? µt, (2.1)

where µt and σt are adapted and locally bounded, W is a standard Brownian motion, and µ is

a Poisson random measure on R+ × E, where E is a Polish space. The compensator ν satisfies

ν(dt, du) = dt ⊗ λ(du) for some σ-finite measure λ on E. Moreover, |δ(ω, t, u)| ∧ 1 ≤ Γm(u) for all

(ω, t, u) with t ≤ τm(ω), where {τm} is a localizing sequence of stopping times and {Γm} a sequence

of deterministic functions satisfying
∫

Γ2
m(u)λ(du) <∞.

In addition, the process Zt = (µt, σ
2
t ) is also an Itô semimartingale on the space (Ω,F , (Ft),P)

with the form

Zt = Z0 +

∫ t

0
µ̃sds+

∫ t

0
σ̃sdW̃s + (δ̃1{|δ̃|≤1}) ? (µ− ν)t + (δ̃1{|δ̃|>1}) ? µt, (2.2)

where µ̃t and σ̃t are locally bounded adapted processes, W̃ is a multivariate Brownian motion, poten-

tially correlated with W , and δ̃ is a predictable function such that for some deterministic function

Γ̃m(u), ‖δ̃(ω, t, u)‖ ∧ 1 ≤ Γ̃m(u) for all ω ∈ Ω, t ≤ τm(ω), and
∫

Γ̃2
m(u)λ(du) <∞.

While the efficient prices are defined in continuous time, we only observe their noisy versions at

discrete time points. We now describe the assumption of the arrival times of transactions:

Assumption 2. The sequence of observation times {ti : i ≥ 0} satisfies t0 = 0 and ti =

ti−1 + T
n ξti−1χi, where the sequence {χi : i ≥ 1} is i.i.d., (0,∞)-valued, defined on (Ω,F ,P), and

independent of the σ-field F∞ =
∨
t>0Ft, with mj = E((χi)

j) < ∞ and m1 = 1, for all j > 0. In

addition, the process ξ = (ξt)t≥0 is a nonnegative Itô-semimartingale defined on (Ω,F , (Ft),P) in the

form of (2.2), such that neither ξt nor ξt− vanishes.

The intervals between adjacent transactions are determined by a continuous-time process, ξt,

and a discrete-time process, χi, jointly. This assumption allows for dependence between trading

times and the underlying driving forces of efficient prices, and thereby accommodates a large class

of sampling schemes; see Jacod, Li, and Zheng (2017) for detailed discussions.
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Next, we impose a discrete-time moving-average process for the microstructure noise to capture

the potential temporal dependence in the transaction prices:1

Assumption 3. The noise sequence {Ui : i ≥ 0} consists of random variables defined on the proba-

bility space (Ω,F ,P) such that {Ui : i ≥ 0} has an MA(∞) representation with mean 0:

Ui = ηtiι
(n)θ(n)(B)εi, with θ(n)(x) = 1 +

∞∑
j=1

θ
(n)
j xj , (2.3)

where B is the lag operator; εi
i.i.d.∼ (0, 1), defined on (Ω,F ,P), is independent of F∞ and {χi : i ≥ 1},

and has finite moments of all orders; (ηt)t≥0 is an (Ft)-adapted nonnegative Itô-semimartingale that

satisfies the same form of (2.2); and ι(n) is a deterministic nonnegative number that characterizes

the noise magnitude and satisfies ι(n) ≤ K.

The noise again depends on a continuous-time process ηt and a discrete-time moving-average

process U . The former introduces dependence between noise and the underlying efficient price,

whereas the latter dictates the temporal dependence of the noise. Combining the two allows for

heteroscedastic, temporally dependent, and endogenous noise.

The parameters of interest in our study are autocovariances {γ(n)
j : j ≥ 0} and autocorrelations

{ρ(n)
j : j ≥ 1} of the noise process, defined as

γ
(n)
j = (ι(n))2

∫ T
0 η2

sξ
−1
s ds∫ T

0 ξ−1
s ds

× κ(n)
j , j ≥ 0, and ρ

(n)
j = κ

(n)
j /κ

(n)
0 , j ≥ 1, (2.4)

where κ
(n)
j is given by

κ
(n)
j =

1

2π

∫ π

−π
g(λ; θ(n))eiλjdλ, j ≥ 0, (2.5)

and g(λ; θ(n)) = |θ(n)(eiλ)|2 is the spectral density of θ(n)(B)ε. While the autocovariances depend on

the underlying processes ηt and ξt that drive the sampling times and noise magnitudes, respectively,

the autocorrelations are entirely determined by the set of parameters {θ(n)
j : j = 1, 2, . . . ,∞} in the

MA process.

Finally, we need some regularity assumption on the behavior of the spectral density of the noise

process so that it is uniformly invertible and its long range dependence cannot be overly strong.

Assumption 4. For each n ≥ 1, the spectral density function of θ(n)(B)ε satisfies for some fixed

α > 3,

inf
λ
g(λ; θ(n)) ≥ 1

K
and

∣∣∣ ∫ π

−π
g(λ; θ(n))eiλjdλ

∣∣∣ ≤ Kj−α, ∀j ≥ 0.

1We use a superscript (n) on noise parameters to facilitate discussion of uniformity over different sequences of
data-generating processes (DGPs) of noise indexed by n. n is a nonobservable mathematical abstraction. All limits
are taken as n→∞. K is a generic n-independent positive constant that may vary from line to line.
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3 Main Results

In what follows, we will discuss the constructed estimators and their asymptotic properties.

3.1 Quasi-likelihood Estimation

To estimate volatility, Da and Xiu (2021) propose a quasi-likelihood approach based on a misspecified

model for observed returns. We adopt the same estimator here, but focus on the noise parameters.

Specifically, we pretend that the efficient price X (in logarithm) is a Brownian motion with constant

volatility but no drift, and that the noise U follows a Gaussian MA(q) model with the order q to be

determined:

dXt = σdWt; Ui = ιθ(B)εi, with θ(x) = 1 +

q∑
j=1

θjx
j , and εi ∼ N (0, 1).

Under this model, the observed log-return vector Yn = (Yn,1, Yn,2, . . . , Yn,nT )ᵀ,

Yn,i = Xti −Xti−1 + Ui − Ui−1, 1 ≤ i ≤ nT . (3.6)

follows a reduced-form Gaussian MA(q+ 1) model, whose nT × nT covariance matrix Σn is given by

Σn(σ2, ι2, θ) = σ2∆nIn +

nT−1∑
h=0

(2γh − γh+1 − γh−1)Gh
n, (3.7)

where (In)ij = δi,j , (Gh
n)ij = δh,|i−j|, and γh is the h-th order autocovariance of U :

γh =
ι2

2π

∫ π

−π
g(λ; θ)eiλhdλ, where g(λ; θ) =

∣∣θ(eiλ)
∣∣2. (3.8)

Since we are interested in the noise autocovariances, we reparameterize the likelihood function

in terms of (σ2, γ):

Ln(σ2, γ) = −1

2
log det(Σn(σ2, γ))− 1

2
tr(Σn(σ2, γ)−1YnY

ᵀ
n ), (3.9)

where Σn(σ2, γ) := Σn(σ2, ι2, θ) and γ is the (q+ 1)-dimensional vector of the noise autocovariances.

We define (σ̂2
n(q), γ̂n(q)) as the maximizer of Ln(σ2, γ):

(σ̂2
n(q), γ̂n(q)) = arg max

(σ2,γ)∈Πn(q)
Ln(σ2, γ), (3.10)

where, following Da and Xiu (2021), the parameter space Πn(q) is defined as

Πn(q) =
{

(σ2, γ) ∈ Rq+2 : inf
λ
f(λ;σ2, γ,∆n) ≥ ∆n

K
, σ2+|γ0|+

∑∞
j=1 j

2|γj |
infλ|σ2∆n + f(λ; γ)|

≤ K
}
. (3.11)
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Here f(λ;σ2, γ,∆n) stands for the spectral density of Yn under the quasi-model: f(λ;σ2, γ,∆n) =

σ2∆n + (2− 2 cosλ)f(λ; γ), with f(λ; γ) =
∑∞

j=−∞ γ|j|e
ijλ.

To determine an appropriate order q, we use information criteria, such as BIC, which in our

setting can be written as

BICn(q) = q log nT − 2 max
(σ2,γ)∈Πn(q)

Ln(σ2, γ).

Our choice of order q will be based on

q̂n = arg min
q≤n1/3

T

BICn(q). (3.12)

We can define a similar criterion based on AIC, by replacing q log nT above by 2q. Hannan (1980)

shows that using BIC results in consistent order selection for ARMA models. We demonstrate that

a similar result with BIC also holds in our setting. We will therefore focus on BIC in the following

discussion.

3.2 Implementation

We implement the exact likelihood via an auxiliary reduced-form MA(q + 1) model of the observed

noisy returns:

Yn,i = φ(B)εi, with φ(x) = 1 +

q+1∑
j=1

φjx
j , 1 ≤ i ≤ n, ε ∼ N (0, χ2). (3.13)

Algorithm 1. Our algorithm starts as follows:

1. Select the optimal order, q̂n, of the MA process (3.13) for Yn using BIC, defined by (3.12) but

rewritten equivalently in terms of χ2 and φ.

2. Obtain exact quasi-likelihood estimates of χ̂2 and φ̂j for 1 ≤ j ≤ q̂n + 1, using the state-space

representation of (3.13) and Kalman filtering,

3. Construct volatility and noise autocovariance estimators using the above estimates:

γ̂n(q̂n)j =
1

2π

∫ π

−π

χ̂2eijλ

|1− eiλ|2

∣∣∣∣∣∣1 +

q̂n+1∑
l=1

φ̂le
ilλ

∣∣∣∣∣∣
2

−

1 +

q̂n+1∑
l=1

φ̂l

2 dλ, 0 ≤ j ≤ q̂n,

σ̂2
n(q̂n) =∆−1

n χ̂2

1 +

q̂n+1∑
j=1

φ̂j

2

,

which are obtained by comparing different parameterizations of the return autocovariances.
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4. Solve q̂n + 1 nonlinear equations for q̂n + 1 model parameters (̂ι2n(q̂n), θ̂n(q̂n)) from γ̂n(q̂n)

obtained in Step 3:

γ̂n(q̂n)j = ι̂2n(q̂n)

q̂n−j∑
l=0

θ̂n(q̂n)lθ̂n(q̂n)l+j , 0 ≤ j ≤ q̂n. (3.14)

A Newton-Raphson algorithm that converges quadratically is available from Wilson (1969).

Effectively, Step 4 is to find q̂n + 1 model parameters of the MA(q̂n) noise process from up-to-

q̂nth-order autocovariances γ̂n(q̂n)j , 0 ≤ j ≤ q̂n. This practice is common in the classic time-series

analysis. For instance, Box, Jenkins, and Reinsel (2007) recommend using this algorithm to find

initial values based on autocovariances for the maximum likelihood estimation of an MA model.

Step 3 is sufficient for volatility and noise autocovariance estimation, and it is rather simple to

implement. If one is further interested in (ι2, θ), a unique solution (̂ι2n(q), θ̂n(q)) exists from Step

4, with probability approaching 1 when noise is sufficiently large relative to the sample size. When

noise is small, however, these parameters are weakly identified, and (3.14) may have no solution such

that ι̂2n(q) is positive and θ̂n(q) is real.

3.3 Model Selection Consistency

We now discuss the asymptotic properties of the proposed estimators. The asymptotic analysis

here is more involved than the classic time-series analysis, because the DGP of observed returns is

misspecified. Moreover, the asymptotic design is in-fill, so that not only the dimensions, but also

the entries of the covariance matrix Σn in the quasi-likelihood, depend on the sample size nT ; see

(3.7). Consequently, prior results from classic time-series studies are not applicable. Even worse, the

quasi-likelihood estimator does not have an explicit form.

We start with a model selection consistency result based on BIC, which allows us to conduct

pointwise inference on autocovariance parameters. We thereby impose a finite-order moving-average

model for the DGP of noise. In an in-fill asymptotic experiment, imposing a finite-order MA model

for noise independent of the sampling frequency might appear ambiguous, in that observations are

filled in between adjacent ones and the dependence structure changes as the sampling frequency

approaches 0. However, as Jacod, Li, and Zheng (2017) argue, the frequency of observations in

practice is fixed by the available data and does not really go to 0. Therefore, the interpretation of

the asymptotic design is that the frequency of our observations is “high enough” to consider that we

are “almost” in the asymptotic regime.

Theorem 1. Suppose Assumptions 1 - 4 hold. We further assume a non-vanishing noise process with

an exact MA(q?) structure, i.e., ι(n) ≥ K−1 and θ(n) ∈ Rq? for all n ≥ 1 and
√
n(log n)−1|θ(n)

q? | → ∞,

for some fixed q? ≥ 0. Then it holds that

lim
n→∞

P(q̂n = q?) = 1.
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As the sample size increases, the likelihood is asymptotically dominated by that of the noise

component. Therefore, the same intuition from the classic time-series result applies here. The

likelihood estimator effectively minimizes the Kullback-Leibler divergence, but only when the selected

order is no smaller than the truth. Moreover, the BIC imposes a penalty just large enough to rule

out orders that are greater than the truth asymptotically. The combination of these two results leads

to the desired consistency in model selection.

3.4 Inference on Noise Autocovariances and Autocorrelations

Recall that in (3.10) and Step 3 of Algorithm 1, we defined and implemented estimators of noise

autocovariances. We now propose estimators of autocorrelations, denoted by ρ̂n(q̂n), which are

defined as follows.

If (3.14) has a solution such that ι̂2n(q̂n) is positive and θ̂n(q̂n) is real, we set2

ρ̂n(q̂n)j =
γ̂n(q̂n)j
γ̂n(q̂n)0

, j ≥ 1.

Otherwise, we set

ρ̂n(q̂n) = 0.

In light of their definitions, we can regard these estimators as “hard-thresholding” estimators, in that

higher-order autocovariance and autocorrelation estimates are truncated to zero beyond the selected

order q̂n.

Next, we prove the pointwise central limit theorem for estimators of noise autocovariances in the

finite-order moving average model. The corresponding result for autocorrelations follows straightfor-

wardly.

Theorem 2. Suppose Assumptions 1 - 4 hold. We further assume ι(n) ≥ K−1 and θ(n) ∈ Rq?

for all n ≥ 1 and some fixed q? ≥ 0. Let γ(n) be the (q? + 1)-dimensional vector of up-to-q?th-

order autocovariances of U , whose components are defined in equation (2.4).3 Assume there exists a

(q? + 1)-dimensional vector γ? such that γ(n) − γ? = oP(1). Then it holds that4

n1/2
(
γ̂n(q?)− γ(n)

) Ls−F∞−→ MN (0q?+1,AVAR1) ,

where

AVAR1 =
(

2W (γ?)−1 + γ?γ?ᵀcum4(ε)
) T

∫ T
0 η4

sξ
−1
s ds( ∫ T

0 η2
sξ
−1
s ds

)2 ,
2Estimates of autocovariances and autocorrelations are, of course, zero beyond the q̂n-th lag.
3Recall that the vectors γ(n) and γ? are indexed from 0. We refer to γ(n) here as a (q?+1)-dimensional vector simply

because γ
(n)
j = 0 for all j > q?, since θ(n) ∈ Rq

?

. For this reason, in most of our discussions, we do not distinguish it
from an ∞-dimensional vector. The same applies to other ∞-dimensional vectors.

4Here and throughout the appendix,
Ls−F∞−→ stands for stable convergence in law with respect to F∞.

9



cum4(ε) denotes the fourth cumulant of ε,

W (γ) =
1

2π

∫ π

−π

(∂ log f(λ; γ)

∂γ

)ᵀ∂ log f(λ; γ)

∂γ
dλ.

This result shows that our estimator achieves the best convergence rate possible—n1/2. In addi-

tion, the nonparametric estimation of volatility, which serves as a nuisance parameter here, does not

influence the asymptotic variance of noise parameters. In fact, the asymptotic variance has the same

form as in the classic time-series analysis–e.g., Brockwell and Davis (1991)–barring η and ξ terms,

which are irrelevant in discrete time settings, as if the observed prices were purely made of noise.

This further suggests that when ε indeed follows a Gaussian distribution, our estimator achieves the

optimal efficiency.

The next corollary presents the central limit result for autocorrelations:

Corollary 1. Suppose the same assumptions as those in Theorem 2 hold. Let ρ(n) be the q? vector

of up-to-q?th-order autocorrelations of U whose components are defined in equation (2.4). Then it

holds that

n1/2
(
ρ̂n(q?)− ρ(n)

) Ls−F∞−→ MN (0q? ,AVAR2) ,

where the ijth entry of the q? × q? matrix AVAR2 is given by

(AVAR2)ij =
γ?i γ

?
j

γ4?
0

(AVAR1)11 +
1

γ2?
0

(AVAR1)i+1,j+1 −
γ?i
γ3?

0

(AVAR1)1,j+1 −
γ?j
γ3?

0

(AVAR1)1,i+1 .

Next, we construct an estimator of the asymptotic variance, AVAR1, in Theorem 2, which natu-

rally leads to an estimator for AVAR2 in Corollary 1.

Proposition 1. Suppose the same assumptions as those in Theorem 2 hold. Define

ÂVAR1 =
(

2W (γ̂n(q̂n))−1 + γ̂n(q̂n)γ̂n(q̂n)ᵀĉum4(ε)
)(
γ̂n(q̂n)0 − γ̂n(q̂n)1

)−2
B̂n,

where, with kn ∼ log n,

ĉum4(ε) = knB̂
−1
n B̂′n − 2kn −

(
γ̂n(q̂n)0 − γ̂n(q̂n)1

)−2 1

π

∫ π

−π
f(λ; γ̂n(q̂n))2(1− cosλ)2dλ,

B̂n =
1

4nTkn

nT−2kn∑
i=1

Y 2
n,i

2kn∑
j=kn+1

Y 2
n,i+j , and B̂′n =

1

4nTkn

nT−kn∑
i=1+kn

Y 2
n,i

kn∑
j=−kn

Y 2
n,i+j .

Then, we have ∥∥∥ÂVAR1 − nTn−1AVAR1

∥∥∥ = oP(1).

With this proposition in place, we can build confidence intervals for noise autocovariances and

autocorrelations using n−1
T ÂVAR1, which does not involve the unobservable scalar n in the CLT.
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3.5 Uniform Consistency of Noise Autocovariances and Autocorrelations

The asymptotic inference established here is pointwise, in the sense that it does not allow for model-

selection mistakes. As pointed out by Leeb and Pötscher (2005), model selection errors matter in

finite samples, to the extent that the prescribed asymptotic distribution could be seriously distorted.

Moreover, uniformly valid inference is generally not available.

That said, we establish a uniform consistency result for γ̂n(q̂n) and ρ̂n(q̂n) with respect to γ(n)

and ρ(n) under L2-norm, where all vectors are regarded as ∞-dimensional. This result sheds light

on the asymptotic behavior of these estimators when noise DGPs are allowed to vary within a larger

class beyond MA(q), allowing for a vanishing magnitude and a more flexible dependence structure.

We characterize the class of noise DGPs we consider in the next assumption.

Assumption 5. Define q?n(k) := min q, subject to nψ4
n

∑2q
j=q |κ̃

(n)
j |2 ≤ kq log n, where ψn := (1 +

n−1/2/ι(n))−1 and κ̃
(n)
j :=

∑∞
i=0(i+ 1)ψin(2κ

(n)
j+1+i − κ

(n)
j+i+2 − κ

(n)
j+i). We assume for any 0 < k < K,

q?n(k) = o(n1/3(ι(n) ∨ n−1/2)4/9), and nψ4
n

∞∑
j=q?n(k)

|κ(n)
j |

2 = O
(
q?n(k) log n

)
.

Intuitively, q?n(k) mimics the “oracle” order that BIC selects. Effectively, Assumption 5 requires

that this order cannot be too large and imposes an upper bound on the approximation error induced

by a selected MA model. Nevertheless, these conditions in Assumption 5 are not restrictive. They

accommodate common processes such as MA(∞), with |κ(n)
j | ∼ j−α for some α > 3∨ 3

2+4 log ι(n)/ logn
,

as well as any finite order ARMA(p, q) with an arbitrarily shrinking noise magnitude ι(n) . 1.

We are now ready to present the uniform consistency result for autocovariances and autocorre-

lations:

Theorem 3. For any sequence of DGPs that satisfies Assumptions 1 - 5, we have

∥∥γ̂(n)(q̂n)− γ(n)
∥∥2

= OP

(
n−1(ι(n))4(q̂n + 1)2 log n+ n−3(n1/2ι(n) + 1)(q̂n + 1)4 log n

)
.

If, in addition, we assume ι(n) ≥ Kn−2/3(log n)1/4, it holds that

∥∥ρ̂n(q̂n)− ρ(n)
∥∥2

= OP

(
(ι(n))−4

∥∥γ̂(n)(q̂n)− γ(n)
∥∥2
)
.

In general, the autocorrelation ρ(n) is weakly identified in the presence of small noise. The last

part of Theorem 3 rules out this scenario, restricting the class of DGPs such that the noise variance

cannot be too small.

Whereas consistent estimation of autocorrelations requires a more restrictive class of DGPs,

Theorem 3 allows for arbitrarily small and vanishing noise for autocovariances. The case of small noise

is highly relevant in practice, as shown from our empirical study below. Our result is complementary
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to the asymptotic theory developed by Jacod, Li, and Zheng (2017) and Li and Linton (2021), who

focus on the case of non-vanishing noise.

3.6 Quadratic Representation

The QMLE estimator appears to have a rather different structure compared with alternative non-

parametric estimators in the literature, e.g., realized kernels, which can be regarded as quadratic

estimators. In this section, we propose an alternative but equivalent quadratic form of the QMLE,

which sheds light on its connection with and distinction from these quadratic estimators. We do so

for both volatility and noise autocovariance estimators.

Theorem 4. Suppose the same assumptions as those in Theorem 2 hold and that γ(n) = γ?. The

QMLE (σ̂2
n(q?), γ̂n(q?)) satisfies that for 0 ≤ j ≤ q?,

σ̂2
n(q?) = Y ᵀ

nWn(σ̂2
n(q?), γ̂n(q?); 1)Yn, γ̂n(q?)j = Y ᵀ

nWn(σ̂2
n(q?), γ̂n(q?); j + 2)Yn, (3.15)

where the set of nT × nT weighting matrices Wn(σ2, γ; l), l = 1, 2, . . . , q? + 2, is defined by5

vec(Wn(σ2, γ; l)) = Σ−1
n (σ2, γ)

∂Σn(σ2, γ)

∂(σ2, γ)
Σ−1
n (σ2, γ)W̃−1

n (σ2, γ)(0l−1, 1, 0q?+2−l),

with Σn(σ2, γ) given by (3.7), and the (q? + 2)× (q? + 2) matrix W̃n(σ2, γ) given by

W̃n(σ2, γ)i,j = tr

(
Σ−1
n (σ2, γ)

∂Σn(σ2, γ)

∂(σ2, γ)i
Σ−1
n (σ2, γ)

∂Σn(σ2, γ)

∂(σ2, γ)j

)
.

Theorem 4 shows that the QMLE can be written as an iterative quadratic estimator. It also

suggests an alternative algorithm for estimation. With some initial values given, we can iteratively

update parameters via equations given by (3.15) until convergence. Figure 1 plots these weighting

matrices for both volatility and noise parameters, and compares them in the case of i.i.d. and MA(5)

noises. The noise weighting matrices feature a “W” shape along the diagonal, and the magnitude of

weighting matrices for autocovariance decays as their order increases. With respect to the volatility

estimator, the bottom panel shows notable “flatness” at the top of the volatility weighting matrix

for the MA(5) model, which helps cancel out the impact of dependent noise. This patten motivates

us to investigate the connection between the QMLE and the flat-top realized kernel introduced by

Varneskov (2016) to the high-frequency environment in the context of volatility estimation. We also

provide an equivalent kernel for autocovariances.

Theorem 5. Suppose the same assumptions as those in Theorem 2 hold. In addition, suppose

q ≥ 0 is fixed and (σ2, γ) ∈ Πn(q) such that K−1 ≤ infλ f(λ; γ) ≤ supλ f(λ; γ) ≤ K. Then for all

50d is the d-dimensional vector of 0s. All vectors are column vectors. We write (a, b, c) in place of (aᵀ, bᵀ, cᵀ) for
simplicity.
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Note: This figure compares weighting matrices Ws in the quadratic representations of the QMLE
for σ2 and ι2 in the case of i.i.d. noise, as well as those matrices for σ2, γ0, γ1, and γ5 in the case
of MA(5) noise. We scale the volatility weighting matrices by T . In both cases, we fix σ? = 0.3,
ι? = 0.005, ∆ = 5 minutes, T = 1 day. The moving-average parameters of the MA(5) process are
given by θ? = (0.25, 0.2, 0.15, 0.1, 0.05).

Figure 1: Quadratic Representations of the Estimators

n1/2+α ≤ i, j ≤ n− n1/2+α with 0 < a < 1
2 , the weighting matrix Wn(σ2, γ; l) satisfies for l ≥ 1,

(i) Wn(σ2, γ; 1)i,j = T−1k
(
H−1
n |i− j|

)
(1 + o(1)), Wn(σ2, γ; l)i,j = λlk̃

(
H−1
n |i− j|

)
+O(1);

(ii) sup
|i−j|≤q+1

∣∣∣Wn(σ2, γ; 1)i,j −Wn(σ2, γ; 1)i,i

∣∣∣ = O(∆3/2
n );

(iii) sup
|i−j|≤q+1

∣∣∣Wn(σ2, γ; l)i,j + 1{l≤|i−j|+1}
|i− j|+ 2− l

2nT

∣∣∣ = O(∆3/2
n ),

where the implied equivalent kernels are k(x) = (1 + x)e−x and k̃(x) = xe−x, the implied bandwidth

is Hn = ζσ−1∆
−1/2
n +O(1) with ζ2 =

∑
|j|≤q γ|j|, and λl = (2σζ3∆

1/2
n nT )−1

∑q+1
r=1(2− δr,1)W (γ)−1

r,l−1,

with W (γ) defined in Theorem 2.

Theorem 5 suggests that the bulk of the QMLE weighting matrices can be approximately written
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as that of a nonparametric kernel estimator with an implicit bandwidth. Despite this equivalence, it

is more convenient to implement the QMLE using Algorithm 1 in Section 3.2, which does not require

tuning parameters barring order selection, or any special adjustment to the border effect. Also note

that this equivalence result is only established under the assumption that the spectral density of the

noise (and hence its magnitude) is bounded from below, which rules out the case of small noise.

4 Monte Carlo Simulations

We examine the finite-sample performance of the estimators in a variety of simulation settings.

Throughout we fix T = 1 day and the average sampling frequency every 5 seconds. We have 1, 000

Monte Carlo trials in total.

4.1 Verification of the Asymptotic Results

We simulate Xt and σ2
t according to the same log-volatility model as in Li and Xiu (2016):{

dXt = (0.05 + 0.5σ2
t )dt+ σtdWt + JXdNt,

σ2
t = Dt exp (−2.8 + 6Ft) , dFt = −4Ftdt+ 0.8dW̃t + JFdNt − 0.02λNdt,

(4.16)

where E[dWtdW̃t] = −0.8dt, JX ∼ N (0, 0.022), JF ∼ N (0.02, 0.022), Nt is a Poisson process with

intensity λN = 25, and Dt captures the diurnal effect:

Dt = 0.75 exp(−10t/T ) + 0.25 exp(−10(1− t/T )) + 0.8.

The arrival of trades follows an inhomogeneous Poisson process with rate nT−1ξ−1
t = nT−1(1 +

cos(2πt/T )/2), so that fewer trades arrive in the middle of the day.

With respect to the noise, we start with an MA(5) model of U with θ? = (0.25, 0.2, 0.15, 0.1, 0.05),

innovation εi being Student’s t-distribution with 7 degrees of freedom, ι = 2.5×10−3, and ηt following

dηt = 10×
((

1 + 10−1 cos(2πt/T )
)
− ηt

)
dt+ 0.1dWt,

where Wt is the same Brownian motion that drives X. We also round the observed prices to the

nearest cent: X̃t = log ([100× exp(Xt)])− log 100, where [·] means rounding to the nearest integer.6

We first assume that the correct order, namely 5, is known, so that we can verify the CLTs for

noise autocovariances given in Section 3.4 without worrying about model selection mistakes. Figure

2 provides the histograms of the standardized estimates for γ̂k(q), k = 0, 2, . . . , 5, using estimated

asymptotic variances. All histograms match the standard normal density.

4.2 Comparison with Alternative Estimators

We then compare our estimators of noise autocorrelations against alternative nonparametric estima-

tors by Jacod, Li, and Zheng (2017) (JLZ) and Li and Linton (2021) (ReMeDI) in a more challenging

6Our theory does not allow for this type of rounding errors. We simulate this model to demonstrate that the
rounding effect appears negligible.
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Figure 2: Histograms of the Standardized Parameter Estimates

Note: This figure plots the histograms of the standardized estimates for γ̂k(q), k = 0, 1, . . . , 5, along with
the density of the standard normal distribution. The noise is simulated from an MA(5) model with θ? =
(0.25, 0.2, 0.15, 0.1, 0.05) and ι? = 2.5× 10−3. The order of the MA model is known prior to estimation.

MA(∞) setting in which θ(B) = (1 − 0.4B)−1(1 + 0.2B). To demonstrate the effect of small noise,

we consider three different scenarios for the magnitude of the noise, ι, which takes values from 10−4

(small noise) to 5× 10−4 (median noise) and 2.5× 10−3 (large noise). Our estimator uses either AIC

or BIC for model selection, whereas nonparametric estimators involve a tuning parameter.

Jacod, Li, and Zheng (2017) propose to estimate autocovariances, γ, by approximating efficient

prices using their local averages:

γ̂JLZ
j =

1

nT

nT+1−j−4hn∑
i=0

(
X̃ti −

1

hn

hn−1∑
l=0

X̃ti+j+l+hn

)(
X̃ti+j −

1

hn

hn−1∑
l=0

X̃ti+j+l+3hn

)
.

Here hn is a sequence of integers satisfying hn ∼ n−η with 1
2v+1 < η < 1

2 , where v is the ρ-mixing

exponent of ε. It determines the local window size used to estimate realization of the noise. Their

paper selects hn = 6 in simulations with 1-second data. According to their criterion, when data are

sampled at 5-second frequency, hn must be an even smaller integer in a finite sample, so we report
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the autocorrelation estimates for hn = 2, 4, and 6.

Li and Linton (2021) suggest an alternative construction that takes the differences of log prices

over longer horizons to dampen the impact of efficient prices:

γ̂ReMeDI
j = − 1

nT

nT−2kn−j∑
i=1

(X̃i+kn − X̃i)(X̃i+j+2kn − X̃i+j+kn),

where kn is a tuning parameter that satisfies: kn → ∞, knn
−η → 0, for 1

2v < η < 1
3 . We select

kn = k′n log n, where k′n = 0.5, 1, and 2 in simulations.

With autocovariances given, the autocorrelations can thereby be estimated accordingly: ρ̂JLZ
j =

γ̂JLZ
j /γ̂JLZ

0 and ρ̂ReMeDI
j = γ̂ReMeDI

j /γ̂ReMeDI
0 . We prefer autocorrelations (to autocovariances) because

their scale is interpretable. However, we find it necessary to winsorize the estimated autocorrelations

for AIC-based QMLE and both nonparametric estimators, when the noise magnitude is small, to

ensure that their estimates are within the natural bound [−1, 1].7

Table 1 provides comparison results for autocorrelations among QMLE, JLZ, and ReMeDI estima-

tors across various noise magnitudes. Several points are worth making. For large noise, all estimators

work reasonably well, but QMLEs generally outperform nonparametric estimators in terms of RMSE

because they are more efficient. AIC slightly outperforms BIC, and ReMeDI appears to outperform

JLZ. The latter suffers from a large finite sample bias. In the small noise regime, nonetheless, the

biases and RMSEs for both nonparametric estimators deteriorate substantially. For estimation of

noise autocovariances, “signal’ is the microstructure friction, whereas “noise” is the efficient price.

When the signal-to-noise ratio is too low, the error due to estimation is too large to justify doing

so. In contrast, the QMLEs either conclude that noise is absent (i.e., θ and ι2 are not available),

in which case all autocorrelations are zeros, or select an MA model with a certain q̂n, so that any

autocorrelation beyond the q̂n-th order is zero. Because of the rapid decay in autocorrelations and

small noise magnitude, 0 is often a better estimate in terms of RMSE than nonparametric estimates,

and in particular for larger lags. Comparing AIC with BIC, the latter is more conservative, as it

essentially yields 0 autocorrelation estimates for almost all Monte Carlo replications, whereas the

former produces many nontrivial estimates. However, doing so seems to increase AIC’s RMSE, and

AIC does require winsorization for about 5.3% of sample paths, compared with 20.9% for ReMeDi

and 4.0% for JLZ. BIC needs no adjustment.

5 Empirical Analysis of U.S. Equity

To demonstrate the empirical relevance of the proposed approach, we conduct a large-scale study of

noise autocovariances for S&P 1500 index constituents from January 1, 1996, to December 31, 2016.

There are approximately 1,500 tickers every day, and about 3,500 tickers in total due to changes in

index constituents. To illustrate, we summarize cross-sectional findings here though all estimates

are available upon request. We use BIC-QMLE for noise-related parameters because of the model

7If a correlation estimate exceeds 1 (resp. -1), we reset it to be 1 (resp. -1).
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Table 1: Simulation Results for Noise Autocorrelation Estimation

QMLE QMLE JLZ JLZ JLZ ReMeDI ReMeDI ReMeDI

BIC AIC hn = 2 hn = 4 hn = 6 k′n = 0.5 k′n = 1 k′n = 2

Panel A: Small Noise

ρ1 BIAS -0.309 -0.195 0.586 0.639 0.657 -0.082 0.224 0.387
RMSE 0.310 0.432 0.587 0.639 0.657 0.577 0.603 0.617

ρ3 BIAS -0.163 -0.101 0.716 0.775 0.795 0.008 0.315 0.477
RMSE 0.163 0.327 0.718 0.775 0.795 0.600 0.691 0.723

ρ5 BIAS -0.044 -0.027 0.821 0.885 0.906 0.048 0.369 0.536
RMSE 0.044 0.242 0.824 0.886 0.906 0.633 0.757 0.801

Panel B: Median Noise

ρ1 BIAS -0.093 -0.017 0.153 0.300 0.379 -0.006 -0.016 -0.035
RMSE 0.150 0.075 0.185 0.312 0.386 0.098 0.150 0.251

ρ3 BIAS -0.063 -0.010 0.188 0.364 0.459 0.000 -0.012 -0.034
RMSE 0.094 0.054 0.227 0.379 0.468 0.111 0.170 0.280

ρ5 BIAS -0.029 -0.004 0.217 0.416 0.524 0.003 -0.002 -0.033
RMSE 0.039 0.036 0.262 0.434 0.535 0.115 0.186 0.300

Panel C: Large Noise

ρ1 BIAS -0.009 -0.001 -0.055 0.010 0.045 0.000 -0.003 -0.001
RMSE 0.040 0.020 0.073 0.063 0.083 0.036 0.039 0.043

ρ3 BIAS -0.008 0.000 -0.066 0.012 0.055 0.001 -0.002 -0.001
RMSE 0.029 0.019 0.088 0.075 0.100 0.042 0.043 0.048

ρ5 BIAS -0.011 0.000 -0.075 0.014 0.062 0.001 0.002 0.000
RMSE 0.028 0.018 0.101 0.086 0.114 0.044 0.046 0.051

Note: This table compares estimators of 1st-, 3rd-, and 5th-order autocorrelations (ρ1, ρ3, ρ5) in three sce-

narios of noise magnitude. “QMLE” is an MA(q̂n)-likelihood estimators using either BIC or AIC for order

selection. “JLZ” refers to the nonparametric estimator of Jacod, Li, and Zheng (2017). “ReMeDI” refers to

the nonparametric estimator of Li and Linton (2021). We report three choices of hn and k′n for comparison.

The AIC-QMLE, JLZ, and ReMeDI estimates of autocorrelations are winsorized so that their magnitude stays

within [−1, 1]. The true 1st, 3rd-, and 5th-order autocorrelations are 0.308, 0.163, and 0.04, respectively.

selection consistency result discussed earlier. We also report volatility estimation results, but with

AIC?-QMLE, as suggested by Da and Xiu (2021).

We download the trades and quotes of all equities at their highest frequency available (up to a

millisecond after January 1, 2007, and a microsecond from July 27, 2015) from the TAQ database.8

Next, we remove trades and quotes with special condition codes or suffix codes, as well as those that

occur outside regular trading hours.9 We then construct national best bid and offer (NBBO) data

8Because companies change their tickers from time to time for mergers, acquisitions, or other reasons, the same
ticker in the TAQ database may correspond to different stocks. We therefore keep track of these changes and use CRSP
PERMINOs to index all stocks that do not change over time.

9We remove trades and quotes with condition codes Z, B, U, T, L, G, W, K, J and corresponding odd-lot trades,
which have an additional letter I, as well as those with non-empty suffix codes (preferred shares). We identify opening
trades as those with condition codes O, Q, OI, or QI; closing trades with 6, M, 6I, or MI; and remove all trades beyond
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using quotes from all exchanges at a 1-second frequency.10 We then match trades with NBBOs by

their recorded time points and remove those trades that are outside the range of the corresponding

NBBOs.11 Our approach is less aggressive than that of Barndorff-Nielsen, Hansen, Lunde, and

Shephard (2009), in that we maintain trades and quotes from all exchanges, whereas they retain

only entries originating from a single exchange. Next, we remove redundant trades, retaining only

nonzero returns.12 This step helps alleviate model misspecification due, for example, to the effect of

rounding, latency or delay across exchanges, and so on. Finally, we remove any stock days that have

fewer than 12 observations after cleaning.

We start by examining the time-series behavior of volatility and microstructure noise. The upper

panel of Figure 3 presents the time series of volatility estimates for constituents of each of the three

indices, respectively. The lower panel provides the time series of noise-variance estimates among

those constituents whose estimates are available. We use lines to represent the median and shaded

areas to represent the lower and upper quartiles in the cross-section. We also smooth these time

series using equal weights over a monthly moving window. Although considerable cross-sectional

variation is present, the median volatility estimates among constituents of all three indices share a

pattern similar to what we usually find from the volatility of the S&P 500 index. That said, the

small caps are on average more volatile than the large caps, with the mid caps in between. As to the

noise, there is a clear declining pattern in its order of magnitude over time across the entire universe,

which is likely because of the improvement in market efficiency. Not surprisingly, the small caps have

the largest noise, followed by the mid cap and then the large cap.

Next, we focus on the dependence structure of the noise. As the left panels of Figure 4 show,

around 30%-60% of stocks have noise that is too small to be estimated. This percentage is higher for

large caps than for small caps. For a large percentage of stock-day pairs, the selected orders based on

the BIC are 0, so that i.i.d. noise assumption is reasonable for them. That said, about 10%-30% of

stock-day pairs remain for which BIC prefers a few more lags. For BIC to select more than 6 lags is

rare. We also find more stock-days in 2016 with selected orders greater than or equal to 1, compared

with earlier years, particularly for large caps. This finding is due to the availability of data sampled

at a frequency even higher than every second, for which we expect to see more autocorrelated lags.

To shed further light on this point, we provide in the right panels of Figure 4 histograms of the

durations of autocorrelations for those tickers with selected lags greater than or equal to 1. Duration

is defined in terms of seconds as the product of the selected order and the average trading frequency

for each stock-day pair. We find that estimated durations are much shorter for large-cap stocks than

for smaller caps. Moreover, the average duration of autocorrelations has been decreasing in the past

the window of opening and closing time points. We only keep trades with correction indicator 00 or 01.
10We construct NBBOs from the millisecond dataset by adapting the SAS codes from https://wrds-web.wharton.

upenn.edu/wrds/research/applications/microstructure/NBBO%20derivation/. Although this database has more
precise timestamps, we do not construct NBBOs at any frequency higher than every second.

11For trades that are observed at millisecond or microsecond intervals, we match them with the NBBOs of the
previous second. Our SAS codes for cleaning the data are available upon request.

12This step is called “tick-time sampling” by Griffin and Oomen (2008).
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Figure 3: Time Series of Volatility and Noise-innovation Variance

Note: The upper panel compares the cross-sectional median (lines), lower, and upper quartiles (shaded areas)
of the annualized volatility estimates for S&P Composite 1500 Index constituents (using Algorithm 1.3), and
the lower panel presents the variance estimates of noise innovation (using Algorithm 1.4) for those constituents
that have large-enough noise. The time series are smoothed with equal weights over a moving window of 21
days. The y-axis of the lower panel is transformed to the logarithm scale for the sake of presentation.

two decades. For instance, the average duration of large caps has decreased from 102 ∼ 103 to merely

10 seconds.

Finally, we discuss the importance of modeling the microstructure noise through the lens of

volatility inference. While there exist informal volatility signature plot or more formal tests of

microstructure noise (Aı̈t-Sahalia and Xiu (2019)), such pre-testing-based approaches do not deliver

correct volatility inference due to uniformity concerns when noise exists but is too small to be

detected. We compare the biases and RMSEs of the popular realized volatility estimator and the

QMLE, to indirectly shed light on the influence of noise. The former estimator, based on data

sampled at a prespecified frequency—say, every 5 or 15 minutes—is most commonly adopted in

practice.

The left panels of Figure 5 compare the cross-sectional medians of realized volatility estimates

based on 5-minute and 15-minute subsamples, respectively, with the corresponding medians of the
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Figure 4: Selected Orders and Durations of Autocorrelations

Note: Left panels provide the frequencies of selected orders using BIC for each stock-day pair in 1996, 2006,
and 2016, respectively. “-1” represents the case of small noise, i.e., the stock-day pair for which no reliable
estimate of noise variance exists. “0” represents the case of i.i.d. noise, whereas other values are the selected
orders of MA processes. Panels on the right provide the corresponding (fitted) histograms of the durations
of autocorrelations in the case of dependent noise. Duration in terms of seconds is defined as the product of
the selected order and the average trading frequency for each stock-day pair. The x-axis is transformed to a
logarithmic scale for the sake of presentation.

QMLEs. Remarkably, on average, a large upward bias associated with the former estimates is present,

potentially due to the presence of noise at the 5-minute frequency. The biases are substantial–over

160% for small caps–compared with noise-robust QMLEs in earlier years. The biases have been

decreasing over the past two decades, with a slight increase post-2008. Biases of the small caps are

more evident than those of the large caps. On average, the large caps are traded more frequently than

every 5 minutes, so their biases in the cross-sectional medians are almost indistinguishable from zero

post-2002. This finding does not imply that every 5 minutes is a safe frequency for each individual

constituent of the S&P 500 index. At a 15-minute frequency, the biases are clearly smaller–though

they have not completely vanished, even in 2016–for these median estimates. The right panels of

Figure 5 compare the ratios of standard errors between the 5-minute (resp. 15-minute) realized

volatility estimator and the QMLE using the entire sample. The larger the ratio, the greater the
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efficiency loss for the realized volatility. We only report results for 2016, because the quality of the

realized volatility estimator is best. We find that when the sampling frequency reaches every 15

minutes, most of the ratios are greater than 1, with some being as large as 10–in particular, for S&P

500 constituents–which suggests substantial efficiency losses.

To sum up, without accounting for noise, the realized volatility estimator faces a bias and variance

dilemma. Estimates using 5-minute data are subject to severe biases, whereas 15-minute estimates

suffer from considerable efficiency losses. Additionally, the standard errors could still be understated

because the noise might not be sufficiently small to the extent that it can be safely ignored.

1996 2003 2010 2017

0%

40%

80%

120%

160%

10
-1

10
0

10
1

10
2

0

0.05

0.1

0.15

10
-1

10
0

10
1

10
2

0

0.05

0.1

0.15

1996 2003 2010 2017

0%

40%

80%

120%

160%

Figure 5: Relative Biases and Standard Errors of the Realized Volatility against QMLE

Note: The right panels plot percentage biases in the cross-sectional medians of 5-minute and 15-minute realized
volatility estimates, respectively, relative to their corresponding QMLEs using the entire sample. Time series
are smoothed with equal weights over a moving window of 21 days. The right panels provide the histograms
of the ratios of standard errors between the 5-minute (resp. 15-minute) realized volatility estimator and the
QMLE, for each stock-day pair in 2016. The x-axes on the right panels are transformed to the a logarithmic
scale for the sake of presentation.

6 Conclusion

We propose a semiparametric approach to disentangling autocovariances and autocorrelations due

to the microstructure frictions associated with observed prices. Our approach resembles a threshold
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estimator, which gives zero autocovariance estimates beyond the lag selected by the information

criteria. This feature delivers superior performance in the finite sample, particularly when noise is

relatively small, compared with alternative nonparametric estimators. Our empirical study of S&P

1500 stocks finds that the microstructure noise has shrunk by several orders of magnitude and that

its autocovariances have faded more rapidly in recent years than earlier. These findings indicate

that market efficiency has improved substantially, potentially due to the popularity of electronic and

algorithmic trading. In a cross-sectional comparison, the autocovariances of small-cap stocks tend

to persist for a longer period than the large caps, perhaps due to limits to arbitrage or for liquidity

reasons.
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Tóth, B., I. Palit, F. Lillo, and J. D. Farmer (2015): “Why is Equity Order Flow so Persis-

24



tent?,” Journal of Economic Dynamics & Control, 51, 218–239.

Varneskov, R. T. (2016): “Estimating the quadratic variation spectrum of noisy asset prices using

generalized flat-top realized kernels,” Econometric Theory, pp. 1–45.

Wilson, G. (1969): “Factorization of the Covariance Generating Function of a Pure Moving Average

Process,” SIAM Journal on Numerica Analysis, 6(1), 1–7.

Xiu, D. (2010): “Quasi-Maximum Likelihood Estimation of Volatility with High Frequency Data,”

Journal of Econometrics, 159, 235–250.

Zhang, L. (2006): “Efficient Estimation of Stochastic Volatility Using Noisy Observations: A Multi-

Scale Approach,” Bernoulli, 12, 1019–1043.
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Appendix A Proofs of Technical Lemmas

A.1 Notation

In this section, we prepare the notation to be used throughout the proofs. Below we will introduce

additional notation that applies only to the corresponding proofs unless otherwise indicated.

Part 1. The probability space (Ω,F , (Ft),P) can be constructed more explicitly. Specifically, we

define X, Z, ξ, and η (which satisfy the relevant assumptions) on a space (Ω(0),F∞, (Ft),P(0)), and

define {χi} and {εi} on a different space (Ω(1),F(1),P(1)). We then set Ω = Ω(0)×Ω(1), F = F∞⊗F(1),

and P(dω(0), dω(1)) = P(0)(dω(0))P(1)(dω(1)).

For any x = (x1, x2, . . . , xq) ∈ Rq, we set xj = 0 for any j ≥ q+1 and denote ‖x‖2(q′) =
∑∞

j=q′+1 x
2
j ,

‖x‖1,(q′) =
∑∞

j=q′+1 |xj |, ‖x‖1 = ‖x‖1,(0), and 1ᵀ ·x =
∑∞

j=1 xj . For an integer i and a random variable

x, we denote the i-th cumulant of x by Cumi(x). LetMd denote the set of all d×d matrices. For any

m and h, let Om,Dhm,Fhm, Im ∈ Mm be defined by (Im)i,j = δi,j , (Om)ij =
√

2
m+1 sin ijπ

m+1 , (Dhm)ij =

δi,j(2 − δh,0) cos hjπ
m+1 , and (Fhm)ij = 1{h=|i−j|} − 1{h=i+j} − 1{h=2m+2−(i+j)}. We also introduce

In, On,Dhn,Fhn ∈ MnT (instead of Mn) with similar entries. We let nd = bn7/8c, Jd = bnT /ndc − 1

and n′d = nT − ndJd. For any m, we define

Dm =

∞∑
h=0

γhDhm, Vm = σ2∆nIm + (2Im − D1
m)Dm, Ωm = OmVmOm, ΩD,n = (IJd ⊗ Ωnd)⊕ Ωn′d

.

(A.1)

Here the dependence of (Dm, Vm,Ωm,ΩD,n) on (σ2, γ,∆n) is omitted.

Part 2. We use ∆n
i A to denote Ati − Ati−1 when A is a continuous-time stochastic process

and to denote Ai − Ai−1 when A is a discrete-time stochastic process. Further, for j ≥ 1, we

introduce t(j)i = t(j−1)nd+i. When A is a continuous-time process, we let AC(j) = At(j−1)nd
, AC,t :=∑∞

j=1AC(j)1{t(j−1)nd
≤t<tjnd}

, and A(j)i = At(j−1)nd+i
. When A is a discrete-time process, we let

A(j)i = A(j−1)nd+i. In both cases, A(j) can be regarded as a discrete-time process. We further let

εC(j)i := ε(j−1)nd+i for i ≥ 1 and εC(j)i := ε̃(j)i for i < 1, where {ε̃(j)i : i ≤ 0, j ≥ 1} is a set of

standard normal random variables that are independent across (i, j) and with everything else. We

define for all i ≥ 1,

UC(j)i = ηC(j)ι(n)θ(n)(B)εC(j)i,

and write UC(j) := (UC(j)1, . . . , U
C(j)nd)

ᵀ.

Part 3. For (m = nd, 1 ≤ j ≤ Jd) or (m = n′d, j = Jd + 1), we define ΩU
m(j) ∈Mm by

ΩU
m(j)ik = (ι(n))2(η(j)iη(j)kκ

(n)
|i−k| + η(j)i−1η(j)k−1κ

(n)
|i−k|

−η(j)iη(j)k−1κ
(n)
|i−k+1| − η(j)i−1η(j)kκ

(n)
|i−k−1|).

Using ΩU
m(j), we define ΩU

n =
(⊕Jd

j=1 ΩU
nd

(j)
)
⊕ΩU

n′d
(Jd+1). For any n, let ΩB

n ,Ω
J
n,Ω

Y
n ,Ω

Y,B
n ∈MnT
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be defined by

(ΩB
n )ij = δi,j

∫ ti

ti−1

σ2
sds, (ΩJ

n)ij = δi,j
∑

ti−1<s≤ti

(∆Xs)
2, ΩY,B

n = ΩU
n + ΩB

n , ΩY
n = ΩY,B

n + ΩJ
n.

Then, for j ≥ 1 we introduce an ∞-dimensional vector γC(j) := (γC(j)k)k≥0 with γC(j)k =

(ι(n))2η2
C(j)κ

(n)
k , and a scalar ζC(j) :=

∑∞
k=−∞ γC(j)|k|. Finally, we introduce

ΩU,C
n (j) = Ond(2Ind − D1

nd
)Dnd(γC(j))Ond ,

where Dnd is defined in (A.1), whose dependence on γC(j) is made explicit.

Part 4. We introduce shorthand notation L(A) = −1
2 log det ΩD,n − 1

2tr(Ω−1
D,nA) and let

LA,n = −1

2
log det Ωn −

1

2
tr(Ω−1

n YnY
ᵀ
n ), LD,n = L(YnY

ᵀ
n ), L̄n = L(ΩY

n ),

where we omit the argument (σ2, γ) of (Ωn,ΩD,n) and (LA,n, LD,n, L̄n, ). Finally, we define

L̄?n(σ2, γ) = −nT
4π

∫ π

−π

(
log f(λ;σ2, γ,∆n) +

f(λ;CT , γ
(n),∆n)

f(λ;σ2, γ,∆n)

)
dλ,

χ2(σ2, γ,∆n) = exp
( 1

2π

∫ π

−π
log f(λ;σ2, γ,∆n)dλ

)
.

Part 5. With any given n, (σ, γ), and q, we define

Rn(σ2, γ) = |σ2 − CT |+ sup
λ
|f(λ; γ)− f(λ; γ(n))|,

R̂n(q) = Rn(σ̂2
n(q), γ̂n(q)), R(n)(q) = Rn(σ(n)(q)2, γ(n)(q)).

Part 6. We introduce a framework to conduct reparameterization. To avoid ambiguity, through-

out the proof we use Π
(σ2,γ)
n (q) to refer to the parameter space Πn(q) defined in (3.11). We let

(σ(n)(q)2, γ(n)(q)) = arg min
(σ2,γ)∈Π

(σ2,γ)
n (q)

L̄?n(σ2, γ).

We start by introducing a bijection from Π
(σ2,γ)
n (q) to Rq+2 denoted by βn(σ2, γ). The inverse

functions are denoted by σ2
n(β) and γn(β). Choices of the functional form of βn will only be specified

when necessary and will typically vary across different scenarios. We set ∂σ2
n := ∂σ2

n(β)/∂β. Let

β̂n(q), β(n)(q) ∈ Rq+2 be defined as

β̂n(q) = βn(σ̂2
n(q), γ̂n(q)), β(n)(q) = βn(σ(n)(q)2, γ(n)(q)), β̄

(n)
= βn(CT , γ

(n)).

Let Πβ
n(q) =

{
β = (β0, β1, . . . , βq+1)ᵀ ∈ Rq+2 : β = βn(σ2, γ) with (σ2, γ) ∈ Π

(σ2,γ)
n (q)

}
. For
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any β ∈ Πβ
n(q), and any Sn ∈ {f(λ; · , · ,∆n), Ln, LA,n, LD,n, L̄n, L̄

?
n,Σn,Ωn,ΩD,n, Vn}, we let

Sn(β) = Sn(σ2, γ), with (σ2, γ) satisfying β = βn(σ2, γ). Furthermore, for β ∈ Πβ
n(q) and s ∈ {A,D}

we define Ξn(β), Ξ̄n(β),Ξs,n(β) ∈ Rq+2 and ∂Ξ̄?n(β) ∈Mq+2 such that

(
Ξn(β)j , Ξ̄n(β)j ,Ξs,n(β)j

)
= − 1

n

∂

∂βj

(
Ln(β), L̄n(β), Ls,n(β)

)
, ∂Ξ̄?n(β)ij = − 1

n

∂2

∂βi∂βj
L̄?n(β), (A.2)

and we write η̄ := −∂Ξ̄?n(β̄
(n)

)−1∂σ2
n.

A.2 Proofs of Lemmas

As is typical in the literature, upon using a classical localization procedure (Section 4.4.1 of Jacod

and Protter (2011)) we can strengthen the conditions introduced by Assumptions 1, 2, and 3 as

follows:

Assumption A1. There exist a constant K > 0 and nonnegative functions Γ and Γ̃, such that the

processes X, µ, σ, ξ, ξ−1, η, µ̃, σ̃ are bounded by K, and the functions δ and δ̃ satisfy |δ(u)| ≤
Γ(u) ≤ K and ‖δ̃(u)‖ ≤ Γ̃(u) ≤ K. The ingredients of ξ and η (not written explicitly) also satisfy

the same conditions as above.

Lemma A1. For all integers m and h satisfying 0 ≤ h ≤ m, it holds that Dhm = OmFhmOm, where

Fhm ∈Mm given by

(Fhm)ij = 1{h=|i−j|} − 1{h=i+j} − 1{h=2m+2−(i+j)}. (A.3)

Proof. The lemma can be verified with straightforward algebra.

Lemma A2. Suppose m∆
1/2+α
n → ∞ for some fixed α > 0. Define Fhm by (A.3). It holds that for

v ∈ {0, 1},

V −1
m (σ2, γ,∆n)D−vm (γ) =

m+1∑
h=0

ρh(σ2, γ,∆n, v)Dhm

and Ω−1
m (σ2, γ,∆n)OmD

−v
m (γ)Om =

m+1∑
h=0

ρh(σ2, γ,∆n, v)Fhm.

Here ρh(σ2, γ,∆n) satisfies that, for all sequences of parameters {(σ2
n, γn) ∈ Π

(σ2,γ)
n (qn) : n ≥ 1} and

all {qn}, (i) under ∆−1
n χ2(σ2

n, γn,∆n)→∞ and for v ∈ {0, 1},

ζ2v
n ρh(σ2

n, γn,∆n, v) =
1− z∗n

σ2∆n(1 + z∗n)
(z∗n)|h| +O

(
(z∗n)|h|χ−2

n log(∆−1/2
n χn) +

1

χ2
n

∧ 1

h2∆n

)
, (A.4)

ζ2v
n

(
ρh(σ2

n, γn,∆n, v)− ρh+1(σ2
n, γn,∆n, v)

)
=

(1− z∗n)2

σ2∆n(1 + z∗n)
(z∗n)h

+O
(

∆1/2
n χ−1

n

( 1

χ2
n

∧ 1

h2∆n

)
+ ((z∗n)hχ−2

n

(
∆1/2
n χ−1

n log(∆−1/2
n χn) + h−1

))
, (A.5)
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ζ2v
n

(
2ρh+1(σ2

n, γn,∆n, v)− ρh+2(σ2
n, γn,∆n, v)− ρh(σ2

n, γn,∆n, v)
)

= − (1− z∗n)3

σ2∆n(1 + z∗n)
(z∗n)h +O

( 1

h2χ2
n

+ (z∗n)h∆nχ
−4
n log(∆−1/2

n χn)
)
, (A.6)

where (z∗n, ζ
2
n, χ

2
n) does not depend on h and is given by

z∗n = 1− σn∆
1/2
n

ζn
+ o(∆1/2

n χ−1
n ), ζ2

n =
∞∑

j=−∞
γn,|j|, χ2

n = χ2(σ2
n, γn,∆n);

and (ii) under ∆−1
n χ2(σ2

n, γn,∆n) ≤ K,

ρh(σ2
n, γn,∆n, 0) = O

(
h−2∆−1

n

)
. (A.7)

Proof. Step 1. (Main proof) Given the expression of V −1
m D−vm , that of Ω−1

m OmD
−v
m Om directly follows

by applying Lemma A1. Hence it suffices to analyze V −1
m D−vm . First, for all z ∈ C with z 6= 0, we

define

V(z;σ2, γ,∆n) := σ2∆n + (2− z − z−1)f(z; γ), with f(z; γ) =
∞∑

j=−∞
γ|j|z

j . (A.8)

We also define

ρ̌h(σ2, γ,∆n, v) =
1

2π

∫ π

−π

eihλdλ

V(eiλ;σ2, γ,∆n)fv(z; γ)
. (A.9)

In the remaining steps, we prove a key property whereby ρ̌h(σ2, γ,∆n) satisfies (A.4), (A.5), (A.6),

and (A.7) (of course, we will replace ρh with ρ̌h in those two equations) for all {(σ2
n, γn) ∈ Π

(σ2,γ)
n (qn) :

n ≥ 1}. Now we demonstrate that this property directly leads to what this lemma claims. In view

of (A.8) and the definitions of Vm and Dhm, we have

Vm(σ2, γ,∆n)j,jD
v
m(γ)j,j = V

(
ei

jπ
m+1 ;σ2, γ,∆n

)
fv
(
ei

jπ
m+1 ; γ

)
, ∀1 ≤ j ≤ m.

Because Vm(σ2, γ,∆n) and Dm(γ) are diagonal by construction, we have

(V −1
m (σ2, γ,∆n)D−vm (γ))i,j =

δi,j

V
(
ei

jπ
m+1 ;σ2, γ,∆n

)
fv
(
ei

jπ
m+1 ; γ

) .
Moreover, since we have (Dhm)i,j = δi,j(2− δh,0) cos hjπ

m+1 , we only need to show that there exists some

ρh(σ2, γ,∆n) that satisfies

that (A.4), (A.5), (A.6), and (A.7) for all {(σ2
n, γn) ∈ Π(σ2,γ)

n (qn) : n ≥ 1} is true, (A.10)
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and that
1

V
(
ei

jπ
m+1 ;σ2, γ,∆n

)
fv
(
ei

jπ
m+1 ; γ

) =

m+1∑
h=0

ρh(σ2, γ,∆n, v) cos
hjπ

m+ 1
. (A.11)

We now prove this is true. Using the definition of ρ̌h(σ2, γ,∆n, v) from (A.9), we can write

1

V
(
ei

jπ
m+1 ;σ2, γ,∆n

)
fv
(
ei

jπ
m+1 ; γ

) =
∞∑
h=0

ρ̌h(σ2, γ,∆n, v)(2− δh,0) cos
hjπ

m+ 1

= −ρ̌0(σ2, γ,∆n, v)

+2
m∑
h=0

∞∑
k=0

ρ̌h+2k(m+1)(σ
2, γ,∆n, v) cos

hjπ

m+ 1

+2

m+1∑
h=1

∞∑
k=0

ρ̌m+1−h+(2k+1)(m+1)(σ
2, γ,∆n, v) cos

hjπ

m+ 1
.

Here the last equality comes from basic properties of sine and cosine functions. This indicates that

(A.11) indeed holds with {ρh}m+1
h=0 given by

ρ0(σ2, γ,∆n, v) = ρ̌0 + 2
∞∑
k=1

ρ̌2k(m+1), ρm+1(σ2, γ,∆n, v) =
∞∑
k=0

ρ̌(2k+1)(m+1), (A.12)

ρh(σ2, γ,∆n, v) =
∞∑
k=0

(
ρ̌h+2k(m+1) + ρ̌m+1−h+(2k+1)(m+1)

)
, ∀1 ≤ h ≤ m. (A.13)

Here we omit the argument (σ2, γ,∆n, v) of ρ̌h. Suppose ρ̌h(σ2, γ,∆n, v) satisfies (A.10). Then,

given that m∆
1/2+α
n →∞ for a fixed α > 0, we have that {ρh}m+1

h=0 defined by (A.12) and (A.13) also

satisfies (A.10), which proves the current lemma. Now we move forward to show that ρ̌h(σ2, γ,∆n, v)

indeed satisfies (A.10).

Step 2. (Characterization of ρ̌) In this step, we connect the behavior of ρ̌ with properties of V
using the definition (A.9). We start with a decomposition. We write that for all p ≥ 1,

V(z;σ2, γ,∆n) = V(z;σ2, γ̃(p, γ),∆n) + V(z; 0, γ̃(−p, γ),∆n),

where γ̃(p, γ) and γ̃(−p, γ) are shorthand notation defined by γ̃(p, γ) = (γ0, γ1, . . . , γp, 0, . . . , 0)ᵀ and

γ̃(−p, γ) = γ − γ̃(p, γ). In other words, γ̃(p, γ) represents the first p + 1 components of γ, while

γ̃(−p, γ) captures the remaining ones. The decomposition directly comes from the fact that V is

linear in γ. In the rest of the proof, for notational simplicity, we write

V(z; ∆n) = V(z;σ2, γ,∆n), V(z; ∆n, p) = V(z;σ2, γ̃(p, γ),∆n),

V(z; ∆n,−p) = V(z;σ2, γ̃(−p, γ),∆n), and f(z; p) = f(z; γ̃(p, γ)).
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We can now write that for all |z| = 1,

V(z; ∆n)−1 = V(z; ∆n, pn)−1

1 +
∞∑
j=1

(
−V(z; ∆n,−pn)

V(z; ∆n, pn)

)j . (A.14)

For a positive sequence pn, let {ρ̌h(∆n, pn, v)}∞h=−∞ and {ρ̌h(∆n,−pn)}∞h=−∞ be the Fourier coeffi-

cients of, respectively, 1
V(eiλ;∆n,pn)fv(eiλ;γ)

and
∑∞

j=1

(
−V(z;∆n,−pn)
V(z;∆n,pn)

)j
:

ρ̌h(∆n, pn, v) =
1

2π

∫ π

−π

e−ihλ

V(eiλ; ∆n, pn)fv(eiλ; γ)
dλ, (A.15)

ρ̌h(∆n,−pn) =
1

2π

∫ π

−π
e−ihλ

∞∑
j=1

(
−V(eiλ; ∆n,−pn)

V(eiλ; ∆n, pn)

)j
dλ. (A.16)

In view of (A.9), (A.14), (A.15), and (A.16), we have

ρ̌h(σ2, γ,∆n, v) = ρ̌h(∆n, pn, v) +

∞∑
j=−∞

ρ̌j(∆n, pn, v)ρ̌h−j(∆n,−pn). (A.17)

Step 3. (Implication of (σ2, γ) ∈ Π
(σ2,γ)
n ) The definition of Π

(σ2,γ)
n indicates

1

K
≤ σ2 ≤ K, (A.18)

where the first inequality is because σ2 = f(0;σ2, γ,∆n) and the second is obvious. Given the

positivity of σ2, the second inequality in (3.11) requires
∑∞
j=1 j

2|γj |
infλ |σ2∆n+f(λ;γ)| ≤ K. This further indicates

sup
λ

∣∣∣∣ ddλ log |σ2∆n + f(λ; γ)|
∣∣∣∣ ≤ K and sup

λ

∣∣∣∣ 1

σ2∆n + f(λ; γ)

d2

dλ2
f(λ; γ)

∣∣∣∣ ≤ K. (A.19)

Because of the periodicity of log |σ2∆n + f(λ; γ)|, the first inequality of (A.19) indicates that

sup
λ

log |σ2∆n + f(λ; γ)| − inf
λ

log |σ2∆n + f(λ; γ)| ≤ K. (A.20)

Using σ2 > 0 and σ2∆n + 4f(−π; γ) > 0, both of which come from the first inequality in (3.11), we

conclude σ2∆n + f(−π; γ) > 0. This indicates, in view of the fact that log x diverges as x→ 0 and

that log |σ2∆n + f(λ; γ)| has a bounded derivative,

inf
λ

(σ2∆n + f(λ; γ)) > 0 and inf
λ

(σ2∆n + f(λ; γ)) ≥ 1

K
sup
λ

(σ2∆n + f(λ; γ)). (A.21)
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The two inequalities in (A.21), plus the positivity of σ2, indicates that

sup
λ
f(λ; γ) ≤ K inf

λ
(σ2∆n + f(λ; γ)) ≤ K

∫ π

−π
σ2∆n + f(λ; γ)dλ ≤ σ2∆n + γ0 ≤ K,

where the last inequality comes from the second inequality in (3.11). Furthermore, using (A.21),

straightforward algebra shows that uniformly over −π ≤ λ ≤ π,

K−1χ2 ≤ σ2∆n + f(λ; γ) ≤ Kχ2 and
∞∑
j=1

j2|γj | ≤ Kχ2, (A.22)

where χ2 = χ2(σ2, γ,∆n). We emphasize that all the Ks involved in the current step are constants

that do not depend on n, and therefore all the bounds here hold uniformly over all {(σ2
n, γn) ∈

Π
(σ2,γ)
n (qn) : n ≥ 1}.

Step 4. (The case ∆−1
n χ2

n → ∞: Properties of V(z; ∆n, p), part 1) Throughout the rest of the

proof, we suppress the subscript n of (σ2
n, γn) whenever possible. In the case of ∆−1

n χ2
n → ∞, we

first prove that for each n sufficiently large and pn satisfying pn∆
1/2
n χ−1

n ≤ K, there exists a unique

complex number z∗n such that

1−K−1p−1
n ≤ |z∗n| ≤ 1 and V(z∗n; ∆n, pn) = 0. (A.23)

In other words, asymptotically, z∗n is the solution of V(z; ∆n, pn) = 0, which is closest to the unit

circle in the complex plane. We first show there exists a unique real solution within [1−K−1p−1
n , 1].

We can calculate
1

1− z
d

dz
V(z; ∆n, pn) =

1 + z

z2
f(z; pn)− 1− z

z

d

dz
f(z; pn). (A.24)

Moreover, we have that for n sufficiently large and uniformly over z ∈ (1−K−1p−1
n , 1),

f(z; pn) ≥ f(1; pn)−
pn∑
j=1

|γj | × |zj + z−j − 2| ≥ K−1χ2
n −Kp−2

n

pn∑
j=1

|γj |j2 ≥ K−1χ2
n. (A.25)

Here the first inequality comes from the triangular inequality, the second comes from the fact that

the highest power terms in f(z; pn) are zpn and z−pn , and the last from the second part of (A.22).

Furthermore, for n sufficiently large and uniformly over z ∈ (1−K−1p−1
n , 1),∣∣∣∣ ddz f(z; pn)

∣∣∣∣ ≤ pn∑
j=1

j|γj ||zj−1 − z−j−1| ≤ Kp−1
n

pn∑
j=1

j2|γj | ≤ Kp−1
n , (A.26)

where once again the first inequality comes from the triangular inequality, the second from the fact

that the highest power terms in f(z; pn) are zpn and z−pn , and the last from the second part of
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(A.22). Plugging (A.25) and (A.26) back into (A.24), we obtain that

inf
z∈(1−K−1p−1

n ,1)

1

1− z
d

dz
V(z; ∆n, pn) ≥ K−1χ2

n. (A.27)

In view of V(1; ∆n, pn) = σ2∆n and σ2 ∈ (K−1,K), as shown in (A.18), plus applying mean value the-

orem, (A.27) readily leads to the existence and uniqueness of the real solution within [1−K−1p−1
n , 1].

Now we show that any z∗n that satisfies (A.23) must be real for large n. Suppose we write z∗n = |z∗n|eiϕ
∗
n

with ϕ ∈ [0, 2π). We prove ϕ∗n = 0 by contradiction. In view of the fact that for all |z| = 1,

V(z; ∆n, pn) ≥ K−1∆n > 0 by construction, it suffices to show that ϕ∗n 6= 0 indicates that |z∗n| = 1.

The imaginary part of V(z∗n; ∆n, pn) is

Im(V(z∗n; ∆n, pn)) = Ra(z∗n) +Rb(z∗n),

where we use the shorthand notation

Ra(z) = − sinϕ

(
|z| − 1

|z|

)
Re(f(z, pn)) and Rb(z) = cosϕ

(
2− |z| − 1

|z|

)
Im(f(z, pn)),

with ϕ ∈ [0, 2π) and eiϕ = z/|z|. We notice that uniformly over z ∈ {z : |z| ∈ (1−K−1p−1
n , 1)},

Re(f(z, pn)) ≥ K−1 and |Im(f(z, pn))| ≤ (1− |z|)× | sinϕ|, with eiϕ = z/|z|,

which can be shown by the same argument that justifies (A.25) and (A.26). This result, plus the

proximity of |z∗n| to one by construction, immediately indicates thatRa dominatesRb asymptotically:

sup
z:|z|∈(1−K−1p−1

n ,1)

∣∣∣∣Rb(z)Ra(z)

∣∣∣∣→ 0.

On the other hand, we obviously have Im(V(z∗n; ∆n, pn)) = 0 because V(z∗n; ∆n, pn) = 0, which

further requires Ra(z∗n) = 0. Therefore ϕ∗n 6= 0 necessarily indicates |z∗n| = 1. Contradiction is

established and the fact that z∗n is real is proved. Finally, we derive the expression of z∗n. We write

z∗n = 1 + a∆
1/2
n χ−1

n + b∆nχ
−2
n + . . . and match the coefficients to let V(z∗n; ∆n, pn) = 0, which gives

the explict expression of z∗n, up to o(∆
1/2
n χ−1

n ):

z∗n = 1− σn∆
1/2
n

ζn
+ o(∆1/2

n χ−1
n ). (A.28)

Step 5. (The case ∆−1
n χ2

n → ∞: Properties of V(z; ∆n, p), part 2) Now we study the properties

of V(z; ∆n, p) beyond its closest-to-unit-circle root for the case of ∆−1
n χ2

n → ∞. Given (A.28) and

noticing that V(z; ∆n, pn) = 0 indicates V(z−1; ∆n, pn) = 0, we can introduce Ṽ(z; ∆n, pn) defined
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by

(z − z∗n)

(
1

z
− z∗n

)
Ṽ(z; ∆n, pn) = V(z; ∆n, pn), (A.29)

where z can be any nonzero complex number. In other words, Ṽ(z; ∆n, pn) can be understood as

capturing the roots of V(z; ∆n, pn) other than z∗n and 1/z∗n. We now analyze its properties; again,

pn∆
1/2
n χ−1

n ≤ K. We first claim that uniformly over −π ≤ λ ≤ π,

K−1 ≤ (eiλ − z∗n)(e−iλ − z∗n)

∆nχ
−2
n + 1− cosλ

≤ K and K−1 ≤ V(eiλ; ∆n, pn)

∆n + χ2
n(1− cosλ)

≤ K, (A.30)

where the first result is obvious for the expression of z∗n from (A.28), while the second result can be

easily verified using the first part of (A.22). Combined with the construction of Ṽ(z; ∆n, pn) from

(A.29), we obtain that uniformly over −π ≤ λ ≤ π,

K−1χ2
n ≤ Ṽ(eiλ; ∆n, pn) ≤ Kχ2

n. (A.31)

In other words, Ṽ(eiλ) is uniformly of the same order of χ2
n. Now we bound the derivatives of Ṽ(eiλ).

We can write

Ṽ(eiλ; ∆n, pn) = h(λ;σ2, γ,∆n) + (z∗n)−1f(eiλ; pn),

where we introduce the shorthand notation h(λ;σ2, γ,∆n) := σ2∆n−(1−z∗)2(z∗)−1f(eiλ;pn)
(1−z∗)2+(2−2 cosλ)z∗ . Because

the second part of (A.22), whereby the first- and second-order derivatives of f(λ; γ) are bounded by

Kχ2
n, plus the fact that |(z∗n)−1| is bounded because of (A.28), it obviously holds that uniformly over

−π ≤ λ ≤ π, ∣∣∣∣ ddλ Ṽ(eiλ)

∣∣∣∣ ≤ Kχ2
n and

∣∣∣∣ d2

dλ2
Ṽ(eiλ)

∣∣∣∣ ≤ Kχ2
n, (A.32)

as long as we show that uniformly over −π ≤ λ ≤ π,∣∣∣∣ ddλh(λ;σ2, γ,∆n)

∣∣∣∣ ≤ Kχ2
n and

∣∣∣∣ d2

dλ2
h(λ;σ2, γ,∆n)

∣∣∣∣ ≤ Kχ2
n. (A.33)

We first explicitly calculate these two derivatives of h. Some algebra can show that

d

dλ
h(λ;σ2, γ,∆n) (A.34)

=
−(1− z∗n)2(z∗n)−1

(1− z∗n)2 + (2− 2 cosλ)z∗n

d

dλ
f(eiλ; pn)

+(σ2∆n − (1− z∗n)2(z∗n)−1f(eiλ; pn))
d

dλ

1

(1− z∗n)2 + (2− 2 cosλ)z∗n
(A.35)

and

d2

dλ2
h(λ;σ2, γ,∆n) (A.36)
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=
−(1− z∗n)2(z∗n)−1

(1− z∗n)2 + (2− 2 cosλ)z∗n

d2

dλ2
f(eiλ; pn)

−2(1− z∗n)2(z∗n)−1

(
d

dλ

1

(1− z∗n)2 + (2− 2 cosλ)z∗n

)
d

dλ
f(eiλ; pn)

+(σ2∆n − (1− z∗n)2(z∗n)−1f(eiλ; pn))
d2

dλ2

1

(1− z∗n)2 + (2− 2 cosλ)z∗n
. (A.37)

Using the expression of z∗ from (A.28), we have that uniformly over −π ≤ λ ≤ π,∣∣∣∣ (1− z∗n)2(z∗n)−1

(1− z∗n)2 + (2− 2 cosλ)z∗n

∣∣∣∣ ≤ K, ∣∣∣∣ ddλ 1

(1− z∗n)2 + (2− 2 cosλ)z∗n

∣∣∣∣ ≤ K |λ|
(∆nχ

−2
n + 2− 2 cosλ)2

,

and ∣∣∣∣ d2

dλ2

1

(1− z∗n)2 + (2− 2 cosλ)z∗n

∣∣∣∣ ≤ K 1

(∆nχ
−2
n + 2− 2 cosλ)2

+K
λ2

(∆nχ
−2
n + 2− 2 cosλ)3

.

Plugging these bounds back into the expressions of the derivatives of h(λ;σ2, γ,∆n) provided by

(A.35) and (A.37), plus the fact that the first- and second-order derivatives of f(eiλ; pn) are bounded

by Kχ2
n, as indicated by the second part of (A.22), plus the magnitude of (1 − z∗n) and (z∗n)−1

indicated by the expression of z∗n from (A.28), we obtain∣∣∣∣ ddλh(λ;σ2, γ,∆n)

∣∣∣∣ ≤ Kχ2
n +K

∣∣∣∣λσ2∆n − (1− z∗n)2(z∗n)−1f(eiλ; pn)

(∆nχ
−2
n + 2− 2 cosλ)2

∣∣∣∣
and ∣∣∣∣ d2

dλ2
h(λ;σ2, γ,∆n)

∣∣∣∣ ≤ Kχ2
n +K∆nχ

−2
n

|λ|
(∆nχ

−2
n + 2− 2 cosλ)2

∣∣∣∣ ddλf(eiλ; pn)

∣∣∣∣
+K

∣∣∣∣σ2∆n − (1− z∗n)2(z∗n)−1f(eiλ; pn)

(∆nχ
−2
n + 2− 2 cosλ)2

∣∣∣∣
+K

∣∣∣∣λ2σ
2∆n − (1− z∗n)2(z∗n)−1f(eiλ; pn)

(∆nχ
−2
n + 2− 2 cosλ)3

∣∣∣∣ .
These two results indicate that to prove (A.33), it is sufficient to show that uniformly over −π ≤
λ ≤ π,

|σ2∆n − (1− z∗n)2(z∗n)−1f(eiλ; pn)| ≤ K∆n(λ2 + ∆nχ
−2
n ) and

∣∣∣∣ ddλf(eiλ; pn)

∣∣∣∣ ≤ χ2
n|λ|. (A.38)

The second part of (A.38) comes from the fact that f(eiλ; pn) is a differentiable even function, so
d
dλf(1; pn) = 0 and the fact that

∣∣∣ d2dλ2 f(eiλ; pn)
∣∣∣ ≤ Kχ2

n uniformly over −π ≤ λ ≤ π is indicated by

the second part of (A.22). Now we show the first part of (A.38). We recall that the definition of z∗n
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requires that

σ2∆n − (1− z∗n)2(z∗n)−1f(z∗n; pn) = 0.

This indicates that

σ2∆n − (1− z∗n)2(z∗n)−1f(eiλ; pn) = −(1− z∗n)2(z∗n)−1(f(eiλ; pn)− f(z∗n; pn)). (A.39)

In view of (1 − z∗n)2 ≤ K∆nχ
−2
n from the expression of z∗n given by (A.28), plus the traingular

inequality, the first part of (A.38) will then come from (A.39) because uniformly over −π ≤ λ ≤ π,

|f(eiλ; pn)− f(1; pn)| ≤ Kλ2
pn∑
j=1

j2|γj | ≤ Kλ2χ2
n, (A.40)

|f(z∗n; pn)− f(1; pn)| ≤ K
pn∑
j=1

|γj ||2− (z∗n)j − (z∗n)−j | ≤ K∆nχ
−2
n

∞∑
j=1

j2|γj | ≤ K∆nχ
−2
n . (A.41)

The first inequality in (A.40) is obvious from the definition of f(z; pn) given in Step 2, while the

second arises from the second part of (A.22). On the other hand, the first inequality in (A.41) is

also obvious from the definition of f(z; pn), the second is from the definition of z∗n, and the last is

once again from the second part of (A.22).

Step 6. (The case of ∆−1
n χ2

n → ∞: Properties of V(z; ∆n,−p)) Now we study the properties of

V(z; ∆n,−p) for the case of ∆−1
n χ2

n →∞. We notice that

V(z; ∆n,−p)
V(z; ∆n, p)

=
(2− z − z−1)f(z;−p)

σ2∆n + (2− z − z−1)f(z; p)
=
f(z;−p)
f(z; p)

−
σ2∆n

f(z;−p)
f(z;p)

σ2∆n + (2− z − z−1)f(z; p)
.

Therefore, we have

sup
λ

∣∣∣∣V(eiλ; ∆n,−p)
V(eiλ; ∆n, p)

∣∣∣∣ ≤ Kχ−2
n sup

λ
f(eiλ;−p) ≤ Kp−2, (A.42)

where the last inequality comes from the second part of (A.22). Further, using the second part of

(A.22) and with direct calculations, we obtain that uniformly over −π ≤ λ ≤ π,∣∣∣∣dV(eiλ; ∆n, p)

dλ

∣∣∣∣ ≤ Kχ2
n|λ|,

∣∣∣∣dV(eiλ; ∆n,−p)
dλ

∣∣∣∣ ≤ Kχ2
n(λ2p−1 + |λ|p−2), (A.43)

∣∣∣∣d2V(eiλ; ∆n, p)

dλ2

∣∣∣∣ ≤ Kχ2
n and

∣∣∣∣d2V(eiλ; ∆n,−p)
dλ2

∣∣∣∣ ≤ Kχ2
n(λ2 + |λ|p−1 + p−2). (A.44)

On the other hand, we can caluculate

d

dλ

V(eiλ; ∆n,−p)
V(eiλ; ∆n, p)

= −V(eiλ; ∆n,−p)
V(eiλ; ∆n, p)2

d

dλ
V(eiλ; ∆n, p) +

1

V(eiλ; ∆n, p)

d

dλ
V(eiλ; ∆n,−p) (A.45)

36



and

d2

dλ2

V(eiλ; ∆n,−p)
V(eiλ; ∆n, p)

= −V(eiλ; ∆n,−p)
V(eiλ; ∆n, p)2

d2V(eiλ; ∆n, p)

dλ2

− 2

V(eiλ; ∆n, p)2

dV(eiλ; ∆n, p)

dλ

dV(eiλ; ∆n,−p)
dλ

+
1

V(eiλ; ∆n, p)

d2V(eiλ; ∆n,−p)
dλ2

. (A.46)

Plugging (A.30) (A.42), (A.43), and (A.44) back into (A.45) and (A.46), we obtain∣∣∣∣ ddλ V(eiλ; ∆n,−p)
V(eiλ; ∆n, p)

∣∣∣∣ ≤ Kp−1 λ2 + λp−1

∆nχ
−2
n + λ2

(A.47)

and ∣∣∣∣ d2

dλ2

V(eiλ; ∆n,−p)
V(eiλ; ∆n, p)

∣∣∣∣ ≤ K p−2 + λ2

∆nχ
−2
n + λ2

+K
|λ|3p−1 + λ2p−2

(∆nχ
−2
n + λ2)2

. (A.48)

Step 7. (The case of ∆−1
n χ2

n ≤ K: Properties of V(z; ∆n)) Now we study the properties of

V(z; ∆n) for the case of ∆−1
n χ2

n ≤ K. We observe that uniformly over −π ≤ λ ≤ π,

K−1∆n ≤ V(eiλ; ∆n) ≤ K∆n.

Indeed, the first inequality comes from the definition of Π
(σ2,γ)
n specified by (3.11). The second

inequality comes from

V(eiλ; ∆n) ≤ σ2∆n +K|f(λ; γ)| ≤ K∆n, (A.49)

in which the first inequality is obvious, given the definition of V(eiλ; ∆n), and the second comes from

(A.18), the first part of (A.22), and ∆−1
n χ2

n ≤ K. Using the second part of (A.22), we obtain, under

the case of ∆−1
n χ2

n ≤ K and uniformly over −π ≤ λ ≤ π,

|f(λ; γ)| ≤ K∆n,

∣∣∣∣df(λ; γ)

dλ

∣∣∣∣ ≤ K∆n,

∣∣∣∣d2f(λ; γ)

d2λ

∣∣∣∣ ≤ K∆n.

These bounds immediately give that uniformly over −π ≤ λ ≤ π,∣∣∣∣dV(eiλ; ∆n)

dλ

∣∣∣∣ ≤ K|f(λ; γ)|+K

∣∣∣∣df(λ; γ)

dλ

∣∣∣∣ ≤ K∆n (A.50)

and ∣∣∣∣d2V(eiλ; ∆n)

dλ2

∣∣∣∣ ≤ K|f(λ; γ)|+K

∣∣∣∣df(λ; γ)

dλ

∣∣∣∣+K

∣∣∣∣d2f(λ; γ)

d2λ

∣∣∣∣ ≤ K∆n. (A.51)

Step 8. (Properties of ρ̌) In this step we show that ρ̌ satisfies (A.10). We start with the case of

∆−1
n χ2

n →∞. We first understand that ρ̌h(∆n, pn) and ρ̌h(∆n,−pn) are defined by (A.15) and (A.16).
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We start by introducing {ρ̃h(∆n, pn, v)}∞h=−∞ as the Fourier coefficients of 1

Ṽ(eiλ;∆n,pn)fv(eiλ;γ)
:

ρ̃h(∆n, pn, v) =
1

2π

∫ π

−π

e−ihλ

Ṽ(eiλ; ∆n, pn)fv(eiλ; γ)
dλ. (A.52)

Using the properties of Ṽ(z; ∆n, pn) specified by (A.31) and (A.32), plus the properties of f(eiλ; γ)

provided by (A.22) and (A.18) (notice that f(eiλ; γ) here is the same as f(λ; γ) in (A.22) and (A.18),

as we slightly abuse the notation), we obtain for pn∆
1/2
n χ−1

n ≤ K,

sup
−π≤λ≤π

∣∣∣∣∣ d2

dλ2

1

Ṽ(eiλ; ∆n, pn)fv(eiλ; γ)

∣∣∣∣∣ ≤ Kχ−2−2v
n .

Let us emphasize that in view of the previous steps, obviously this result holds uniformly over

{(σ2
n, γn) ∈ Π

(σ2,γ)
n (qn) : n ≥ 1}; so do all of the relevant results throughout the proof. We omit

mentioning this afterward. According to the well-known results on how the smoothness of a function

affects the order of magnitude of its Fourier coefficients (see, e.g., the proof of Theorem II.4.7 on

Page 46 of Zygmund (2002)), we have, for pn∆
1/2
n χ−1

n ≤ K,

|ρ̃h(∆n, pn, v)| ≤ Kχ−2−2v
n h−2. (A.53)

Further, we notice that from (A.29) and (A.52) we have

∞∑
j=−∞

ρ̃j(∆n, pn, v) =

∞∑
j=−∞

ρ̃j(∆n, pn, v)eij0 =
1

Ṽ(1; ∆n, pn)fv(1, γ)
=

(1− z∗n)2

σ2∆nζ2v
n

. (A.54)

On the other hand, in view of the decomposition of V(eiλ; ∆n, pn) using Ṽ(z; ∆n, pn) and the definition

of ρ̌h(∆n, pn, v) given in (A.15) as the coefficients of the Laurent expansion of 1
V(eiλ;∆n,pn)fv(eiλ;γ)

, we

can write

ρ̌h(∆n, pn, v) =
1

1− (z∗n)2

∞∑
j=−∞

ρ̃j(∆n, pn, v)(z∗n)|j−h|. (A.55)

Therefore, using (A.53) and (A.54), plus the expression z∗n from (A.28) and the bound on σ2 from

(A.18), we can write

∣∣∣∣∣ρ̌h(∆n, pn, v)− (1− z∗n)2

σ2∆nζ2
n

(z∗n)|h|

1− (z∗n)2

∣∣∣∣∣ =
1

1− (z∗n)2

∣∣∣∣∣∣
∞∑

j=−∞
ρ̃j(∆n, pn, v)((z∗n)|h−j| − (z∗n)|h|)

∣∣∣∣∣∣
≤ K(z∗n)|h|χ−2−2v

n log(∆−1/2
n χn). (A.56)

Now we move to ρ̌h(∆n,−pn). The properties of V(z; ∆n,−p) provided by Step 6, including (A.42),
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(A.47), and (A.48), indicate that under pn∆
−1/2
n χn → 1,

∫ π

−π

∣∣∣∣∣∣ d
2

dλ2

∞∑
j=1

(
−V(eiλ; ∆n,−pn)

V(eiλ; ∆n, pn)

)j∣∣∣∣∣∣ dλ ≤ K.
Following the proof of Theorem II.4.7 of Zygmund (2002), plus the definition of ρ̌h(∆n,−pn) given

by (A.16), plus (A.42), this immediately indicates that under pn∆
−1/2
n χn → 1,

|ρ̌h(∆n,−pn)| ≤ K((∆nχ
−2
n ) ∧ h−2). (A.57)

Now we combine (A.56), (A.57), and (A.17) to obtain

ρ̌h(σ2, γ,∆n, v) = ρ̌h(∆n, pn, v) +O

(
1

χ2+2v
n

∧ 1

h2∆nχ2v
n

)
,

which, combined with (A.56) again, is exactly (A.4). Now we prove (A.5). In view of (A.54), we can

write

ρ̌h(∆n, pn, v)− ρ̌h+1(∆n, pn, v) =
1

1− (z∗n)2

∞∑
j=h+1

ρ̃j(∆n, pn, v)(z∗n)j−h−1(z∗n − 1)

+
1

1− (z∗n)2

h∑
j=−∞

ρ̃j(∆n, pn, v)(z∗n)h−j(1− z∗n).

This indicates, using (A.53), the expression of z∗n from (A.28), and the bound on σ2 from (A.18),

that

ζ2v
n

(
ρ̌h(∆n, pn, v)− ρ̌h+1(∆n, pn, v)

)
=

(1− z∗n)2

σ2∆n(1 + z∗n)
(z∗n)h +O

(
∆1/2
n χ−1

n

( 1

χ2
n

∧ 1

h2∆n

))
+O
(

(z∗n)hχ−2
n

(
∆1/2
n χ−1

n log(∆−1/2
n χn) + h−1

))
.

Provided this result, we can immediately verify (A.5) by observing that

ρ̌h(σ2, γ,∆n, v)− ρ̌h+1(σ2, γ,∆n, v) = ρ̌h(∆n, pn, v)− ρ̌h+1(∆n, pn, v)

+

∞∑
j=−∞

(
ρ̌j(∆n, pn, v)− ρ̌j+1(∆n, pn, v)

)
ρ̌h−j(∆n,−pn)

and using the bound on ρ̌h(∆n,−pn) given by (A.57). We can prove (A.6) in the same way. Indeed,

(A.54) and (A.55) indicate that

2ρ̌h+1(∆n, pn, v)− ρ̌h+2(∆n, pn, v)− ρ̌h(∆n, pn, v)
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= − (1− z∗n)3

σ2∆n(1 + z∗n)
(z∗n)h − 1− z∗n

1 + z∗n
(z∗n)h

∞∑
j=h+2

ρ̃j(∆n, pn, v)
(

(z∗n)j−2h−1 − 1
)

−1− z∗n
1 + z∗n

(z∗n)hρ̃h+1(∆n, pn, v)
(

(z∗n)1−h 2

z∗n − 1
− 1
)

−1− z∗n
1 + z∗n

(z∗n)h
h∑

j=−∞
ρ̃j(∆n, pn, v)

(
(z∗n)1−j − 1

)
.

Using (A.53), the expression of z∗n from (A.28), and the bound on σ2 from (A.18), we obtain

ζ2v
n

(
2ρ̌h+1(∆n, pn, v)− ρ̌h+2(∆n, pn, v)− ρ̌h(∆n, pn, v)

)
= − (1− z∗n)3

σ2∆n(1 + z∗n)
(z∗n)h +O

(
(z∗n)h∆nχ

−4
n log(∆−1/2

n χn) + χ−2
n h−2

)
.

Combining this result with the equality

2ρ̌h+1(σ2, γ,∆n, v)− ρ̌h(σ2, γ,∆n, v)− ρ̌h+1(σ2, γ,∆n, v)

= 2ρ̌h+1(∆n, pn, v)− ρ̌h+2(∆n, pn, v)− ρ̌h(∆n, pn, v)

+
∞∑

j=−∞

(
2ρ̌h+1(∆n, pn, v)− ρ̌h+2(∆n, pn, v)− ρ̌h(∆n, pn, v)

)
ρ̌h−j(∆n,−pn),

which comes immediately from (A.17), and the bound on ρ̌h(∆n,−pn) given by (A.57), we readily

obtain (A.6). We move forward to the case of ∆−1
n χ2

n ≤ K and prove (A.7). This is relatively

straightforward. Given (A.49), (A.50), and (A.51), it follows that

sup
λ

∣∣∣∣ d2

dλ2

1

V(eiλ; ∆n)

∣∣∣∣ ≤ K∆−1
n .

Following the proof of Theorem II.4.7 of Zygmund (2002), we immediately obtain

ρ̌h(σ2, γ,∆n, 0) =
1

2π

∫ π

−π

e−ihλ

V(eiλ; ∆n)
dλ = O

(
1

h2∆n

)
. (A.58)

Lemma A3. Suppose m∆
1/2+α
n → ∞ for some fixed α > 0. Also suppose (σ2, γ) ∈ Π

(σ2,γ)
n (q) with

q fixed and 1
K ≤ infλ f(λ; γ) ≤ supλ f(λ; γ) ≤ K. Let ζ2 = f(0, γ). As n→∞, it holds that

Vn(σ2, γ,∆n) =
1

ζ̃
2Vn(σ̃2, ζ̃

2
,∆n)OnDn(γ̃)On, with |σ2 − σ̃2|+ ‖γ̃ − γ‖+ |ζ̃

2
− ζ2| . n−1/2,

and

Ω−1
n (σ2, ζ2, 0)ij = bn(z|i−j|n − zi+jn − z2n+2−i−j

n ) +O(n−∞),
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where bn and zn do not depend on i or j and satisfy

bn =
1

2σζ∆
1/2
n

+O(1), zn = 1−
√
σ2∆n

ζ
+O(n−1).

Proof. The desired results follow from a simplified version of the proof of Lemma A2. Concretely,

the fact that q is finite allows us to solve explicitly the q + 1 zeros of V(z;σ2, γ,∆n), up to O(n−1).

Hence, we directly obtain the first result using steps 1, 3, and 4 of the proof of A2. The second result

follows by also applying Lemma A1.

Lemma A4. Suppose m∆
1/2+α
n → ∞ for some fixed α > 0. Let ζ2 = f(0; γ). Omitting

the argument (σ2, γ,∆n) of Vm and Dm, it holds that, for all (σ2, γ) ∈ Π
(σ2,γ)
n (qn) satisfying

supλ f(λ; γ) ∼ infλ f(λ; γ) and ∆−1
n γ0 →∞,

(i) For j ∈ {1, 2, 3, 4},

tr(V −jm ) =
λjm

ζ(σ2∆n)j−1/2
+ o(m∆−j+1/2

n ), with λ1 =
1

2
, λ2 =

1

4
, λ3 =

3

16
, λ4 =

5

32
.

(ii) For 0 ≤ i, j ≤ qn, and v ∈ {0, 1},

1

m
tr

(
V −1
m

∂Vm
∂γi

(
V −1
m

∂Vm
∂γj

)v)
=

1

2π

∫ π

−π

∂ log f(λ; γ)

∂γi

(∂ log f(λ; γ)

∂γj

)v
dλ+ o(1).

Proof. The current lemma follows from straightforward algebra using Lemma A2.

Lemma A5. Suppose Assumptions 1 - 4 hold. For all sequences {qn} and under ι(n)∆
−1/2
n →∞, it

holds that for all 0 ≤ j ≤ qn,

∣∣σ(n)(qn)2 − CT
∣∣ . K

∥∥γ(n)
∥∥

1,(qn)
/(ι(n))2,

∣∣γ(n)(qn)j − γ(n)
j

∣∣ . ( ∆
3/4
n qn

(ι(n))3/2
+ 1

)∥∥γ(n)
∥∥

(qn)
.

Proof. Step 1. (Characterization of σ(n)(qn)2−CT ) Throughout the proof, we omit writing the sub-

script n of qn. The inequality obviously holds, by the definition of Π
(σ2,γ)
n (q), if ‖γ(n)‖(qn)/(ι

(n))2 ≥
1
K . The subsequence argument indicates that we only need to consider the case in which

‖γ(n)‖1,(qn)/(ι
(n))2 = o(1). The definitions of Π

(σ2,γ)
n (q) and of (σ(n)(q)2, γ(n)(q)) and Assumption 4

indicate that ∂L̄?n
∂γj

= 0, ∀ 0 ≤ j ≤ q and ∂L̄?n
∂σ2 = 0. Now we solve these first-order conditions explicitly.

From the definition of L̄?n(σ2, γ), we have that for 0 ≤ j ≤ q,

− 2

nT

∂L̄?n(σ2, γ)

∂σ2
=

∆n

2π

∫ π

−π

f(λ;CT , γ
(n),∆n)− f(λ;σ2, γ,∆n)

f2(λ;σ2, γ,∆n)
dλ, (A.59)

− 2

nT

1

2− δ0,j

∂L̄?n(σ2, γ)

∂γj
=

1

2π

∫ π

−π

f(λ;CT , γ
(n),∆n)− f(λ;σ2, γ,∆n)

f2(λ;σ2, γ,∆n)
(2− 2 cosλ) cos jλdλ.(A.60)
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Substituting the definition of f back into (A.59) and (A.60), we can write that for 0 ≤ j ≤ q,

− 2

nT

∂L̄?n(σ2, γ)

∂σ2
= c(σ2, γ)1,1(CT − σ(n)(q)2) +

∞∑
k=0

c(σ2, γ)1,2+k(γ
(n)
k − γk), (A.61)

− 2

nT

∂L̄?n(σ2, γ)

∂γj
= c(σ2, γ)j+2,1(CT − σ(n)(q)2) +

∞∑
j=0

c(σ2, γ)2+j,2+k(γ
(n)
k − γk). (A.62)

Here we use the shorthand notation

c(σ2, γ)1,1 =
1

2π

∫ π

−π

∆2
n

f2(λ;σ2, γ,∆n)
dλ,

c(σ2, γ)j+2,1 = c(σ2, γ)1,2+j =
1

2π

∫ π

−π

∆n(2− 2 cosλ)(2− δj,0) cos jλ

f2(λ;σ2, γ,∆n)
dλ,

c(σ2, γ)j+2,k+2 =
1

2π

∫ π

−π

(2− 2 cosλ)2(2− δj,0) cos jλ(2− δk,0) cos kλ

f2(λ;σ2, γ,∆n)
dλ.

Recall that equations (A.61) and (A.62), evaluated at (σ2, γ) = (σ(n)(q)2, γ(n)(q)) are the first-order

conditions we are solving. In view of the form of (A.61) and (A.62), plus the fact that γ(n)(q)j = 0

for j ≥ q + 1, we introduce a (q + 2)-dimensional vector A defined as the first q + 2 components of

(CT − σ(n)(q)2, γ(n) − γ(n)(q)). We can write the first-order conditions in a compact form:

q+2∑
k=1

cj,kAk +

∞∑
k=q+3

cj,kγ
(n)
k−2 = 0

for all 1 ≤ j ≤ q + 2. Here we omit the argument (σ(n)(q)2, γ(n)(q)) of c for cleaner exposition. This

system of q+ 2 equations can be regarded as a matrix equation satisfied by vector A. Indeed, we can

write CA+B = 0, where C is a (q + 2)× (q + 2) matrix and B is a (q + 2)-dimensional vector and

their entries are given by Cj,k = c(σ(n)(q)2, γ(n)(q))j,k, and Bj =
∑∞

k=q+3 c(σ
(n)(q)2, γ(n)(q))j,kγ

(n)
k−2.

We can invert the equation CA+B = 0 and obtain an explicit characterization of (σ(n)(q)2, γ(n)(q)):

σ(n)(q)2 − CT =

q+2∑
k=1

(C−1)1,kBk, γ(n)(q)j − γ(n)
j =

q+2∑
k=1

(C−1)j+2,kBk. (A.63)

We note that here we have only solved (σ(n)(q)2, γ(n)(q)) partially, because vector B and matrix C

depend on (σ(n)(q)2, γ(n)(q)). But the goal here is to show that σ(n)(q)2 − CT is small, and such

partial solution turns out to be sufficient.

Step 2. (Behavior of χ2) It is clear from (A.63) that we understand the properies of c and C−1

to provide a bound on σ(n)(qn)2 − CT . Before that, we first understand the behavior of

χ(n)(q)2 := χ2(σ(n)(q)2, γ(n)(q),∆n),
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which is technically necessary. We introduce shorthand γ
(n)
(q) to be the (q + 1)-dimensional vector

consisting of the first q + 1 components of γ(n). Because of the properties of θ(n) specified by

Assumption 4 and the definitions of γ(n) and Π
(σ2,γ)
n (q), we have (CT , γ

(n)
(q) ) ∈ Π

(σ2,γ)
n (q) . Therefore

the first part of (A.22) indicates that uniformly over −π ≤ λ ≤ π,

CT∆n + f(λ; γ
(n)
(q) ) ∼ χ2(CT , γ

(n)
(q) ,∆n). (A.64)

In view of the definition of χ2(σ2, γ,∆n), we conclude that under ∆
−1/2
n ι(n) →∞,

χ2(CT , γ
(n)
(q) ,∆n) ∼ (ι(n))2. (A.65)

Because we are considering ‖γ(n)‖1,(q)(ι(n))−2 = o(1), as we discussed in Step 1, and the fact that

(A.64) and (A.65) jointly indicate f(λ; γ(n)) ≥ K−1(ι(n))2 under ∆
−1/2
n ι(n) →∞ and uniformly over

−π ≤ λ ≤ π, f(λ; γ
(n)
(q) ) = f(λ; γ(n))−

∑∞
j=q+1 2γ

(n)
j cosλ ≥ K−1(ι(n))2, which further gives

f(λ;CT , γ
(n),∆n)

f(λ;CT , γ
(n)
(q) ,∆n)

= 1 +
(2− 2 cosλ)

∑∞
j=q+1 2γ

(n)
j cosλ

σ2∆n + (2− 2 cosλ)f(λ; γ
(n)
(q) )

= 1 + o(1).

Given this result, and in view of the definition of L̄?n(σ2, γ), we can write 2n−1
T L̄?n(CT , γ

(n)
(q) ) =

− logχ2(CT , γ
(n)
(q) ,∆n)− 1 + o(1). Since (σ(n)(q)2, γ(n)(q)) is constructed as the maximizer of L̄?n over

Π
(σ2,γ)
n (q), we have

2n−1
T L̄?n(σ(n)(q)2, γ(n)(q)) ≥ − logχ2(CT , γ

(n)
(q) ,∆n)− 1 + o(1). (A.66)

On the other hand, starting from the definition of L̄?n, we can write

2n−1
T L̄?n(σ(n)(q)2, γ(n)(q)) ≤ − logχ2(σ(n)(q)2, γ(n)(q),∆n)−K−1

χ2(CT , γ
(n)
(q) ,∆n)

χ2(σ(n)(q)2, γ(n)(q),∆n)
, (A.67)

where the last step comes from the first inequality in (A.64) and the fact that it holds uniformly over

−π ≤ λ ≤ π that 0 < f(λ;σ(n)(q)2, γ(n)(q),∆n) ≤ Kχ2(σ(n)(q)2, γ(n)(q),∆n), which is indicated by

the first part of (A.22), since we obviously have (σ(n)(q)2, γ(n)(q)) ∈ Π
(σ2,γ)
n (q). Combining (A.66)

and (A.67) indicates that log χ2(σ(n)(q)2,γ(n)(q),∆n)

χ2(CT ,γ
(n)
(q)

,∆n)
+ K−1

χ2(CT ,γ
(n)
(q)

,∆n)

χ2(σ(n)(q)2,γ(n)(q),∆n)
≤ 1 + o(1). Combined

with (A.66) and (A.67), this indicates that we must have

χ2(σ(n)(q)2, γ(n)(q),∆n) ∼ χ2(CT , γ
(n)
(q) ,∆n). (A.68)

Step 3. (Properties of c) In this step we analyze the properies of c. We first express c in terms

of Fourier coefficients of various functions. Fourier analysis states that 1
f(λ;σ2,γ,∆n)

=
∑∞

j=−∞ ρje
ijλ,
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with ρj := 1
2π

∫ π
−π

e−ijλdλ
f(λ;σ2,γ,∆n)

. This allows us to write c(σ2, γ)1,1 = ∆2
n

∑∞
j=−∞ ρ

2
j . Now we move to

c(σ2, γ)1,2+j and c(σ2, γ)j+2,k+2. We first show some auxiliary results. We introduce for p ∈ {1, 2},
ρ

(γ,p)
j := 1

2π

∫ π
−π

e−ijλdλ
fp(λ;γ) . We can calculate with some algebra that for p ∈ {1, 2},

1

2π

∫ π

−π

eiiλ

fp(λ; γ)
dλ = ρ

(γ,p)
i , (A.69)

1

2π

∫ π

−π

1

f(λ;σ2, γ,∆n)

eiiλ

fp(λ; γ)
dλ =

∞∑
j=−∞

ρ
(γ,p)
j ρi+j , (A.70)

1

2π

∫ π

−π

1

f2(λ;σ2, γ,∆n)

eiiλ

fp(λ; γ)
dλ =

∞∑
j=−∞

∞∑
k=−∞

ρ
(γ,p)
j ρkρi+j+k. (A.71)

Next, from the definition of f(λ;σ2, γ,∆n) we notice that

1

2π

∫ π

−π

(2− 2 cosλ) cos iλ

f2(λ;σ2, γ,∆n)
dλ =

1

2π

∫ π

−π

f(λ;σ2, γ,∆n)− σ2∆n

f2(λ;σ2, γ,∆n)

eiiλ

f(λ; γ)
dλ,

1

2π

∫ π

−π

(2− 2 cosλ)2 cos jλ cos kλ

f2(λ;σ2, γ,∆n)
dλ =

1

2π

∫ π

−π

(f(λ;σ2, γ,∆n)− σ2∆n)2

f2(λ;σ2, γ,∆n)

ei(i+j)λ + ei(i−j)λ

2f2(λ; γ)
dλ.

With these two equalities, plus (A.69) - (A.71), we are able to write

c(σ2, γ)1,2+j = ∆n(2− δj,0)
( ∞∑
k=−∞

ρ
(γ,1)
j ρj+k − σ2∆n

∞∑
k=−∞

∞∑
l=−∞

ρ
(γ,1)
k ρlρj+k+l

)
,

c(σ2, γ)i+2,j+2 =
1

2
(2− δi,0)(2− δj,0)

(
(ρ

(γ,2)
i+j + ρ

(γ,2)
i−j )− 2σ2∆n

∞∑
l=−∞

ρ
(γ,2)
l (ρi+j+l + ρi−j+l)

+ (σ2∆n)2
∞∑

k=−∞

∞∑
l=−∞

ρ
(γ,2)
k ρl(ρi+j+k+l + ρi−j+k+l)

)
.

At this stage, it is quite clear that in order to bound c, we only need to control the behavior of ρ

and ρ(γ,p). To emphasize the dependence, we write ρh(σ2, γ,∆n) and ρ
(γ,p)
h (γ). Scrutiny of the proof

of Lemma A2 reveals that ρh(σ2, γ,∆n) is exactly ρ̌h(σ2, γ,∆n) defined in (A.9). Therefore, we have

under {(σ2
n, γn) ∈ Π

(σ2,γ)
n (q) : n ≥ 1} and ∆−1

n χ2(σ2
n, γn,∆n)→∞, ρh(σ2

n, γn,∆n) satisfies (A.4). It

is worth pointing out that ρh here and ρh in Lemma A2 are not exactly the same, but are very close

and both satisfy (A.4). See the ending part of step 1 of the proof of Lemma A2 for details. On the

other hand, from the construction of Π
(σ2,γ)
n (q), we know under {(σ2

n, γn) ∈ Π
(σ2,γ)
n (q) : n ≥ 1} and

∆−1
n χ2(σ2

n, γn,∆n)→∞ that uniformly over −π ≤ λ ≤ π,

K−1χ2
n ≤ f(λ; γn) ≤ Kχ2

n and

∞∑
h=0

h2|(γn)h| ≤ Kχ2
n, with χ2

n := χ2(σ2
n, γn,∆n),

where both results come from (A.18) and (A.22). An immediate result is that under the same
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condition and for p ∈ {1, 2}, we can control the order of magnitude of the Fourier coefficients

f−p(λ; γn) (see, e.g., the proof of Theorem II.4.7 of Zygmund (2002)), i.e., ρ
(γ,p)
h (γn) as

∞∑
h=0

(h+ 1)2χ2p
n |ρ

(γ,p)
h (γn)| ≤ K. (A.72)

Given the bounds on ρh(σ2
n, γn,∆n) and ρ

(γ,p)
h (γn), plus 1

K ≤ σ2
n ≤ K as indicated by (A.18), some

algebra leads to the following technical results, again under the condition {(σ2
n, γn) ∈ Π

(σ2,γ)
n (q) :

n ≥ 1} and ∆−1
n χ2(σ2

n, γn,∆n)→∞ and for p ∈ {1, 2},

∞∑
l=−∞

|ρlρi+l| .
e−|i|∆

1/2
n χ−1

n

∆
3/2
n χn

+
1

∆n

( 1

χ2
n

∧ 1

i2∆n

)
,

χ2p
n

∞∑
j=−∞

|ρ(γ,p)
j ρi+j | .

1

∆
1/2
n χn

(
e−|i|∆

1/2
n χ−1

n +
∆
−1/2
n χn
i2

∧ 1
)
,

χ2p
n

∞∑
k=−∞

∞∑
l=−∞

|ρ(γ,p)
k ρlρi+k+l| .

1

∆
3/2
n χn

(
e−|i|∆

1/2
n χ−1

n +
∆
−1/2
n χn
i2

∧ 1
)
,

where χ2
n := χ2(σ2

n, γn,∆n). Therefore, using the previous expressions of c in terms of ρ and ρ(γ,p),

plus that ∆−1
n χ2(σ(n)(q)2, γ(n)(q),∆n)→∞ as required by (A.68) and ∆

−1/2
n ι(n) →∞, we are able

to write

|c(σ(n)(q)2, γ(n)(q))1,1| . ∆1/2
n (ι(n))−1,

(ι(n))2|c(σ(n)(q)2, γ(n)(q))1,2+j | .
∆

1/2
n

ι(n)
e−|j|∆

1/2
n (ι(n))−1

+
1

j2
∧ ∆

1/2
n

ι(n)
, (A.73)

(ι(n))4|c(σ(n)(q)2, γ(n)(q))i+2,j+2| . |ρ(γ,2)
i+j + ρ

(γ,2)
i−j |

+
∆

1/2
n

ι(n)

(
e−|i+j|∆

1/2
n (ι(n))−1

+ e−|i−j|∆
1/2
n (ι(n))−1

)
. (A.74)

Step 4. (Properties of C−1: Special case) Now we invert matrix C. We define a (q+ 2)× (q+ 2)

matrix C(σ2, γ) whose entries are

C(σ2, γ)i,j = c(σ2, γ)i,j , 1 ≤ i, j ≤ q + 2. (A.75)

Obviously, the matrix C appearing in (A.63) is just C(σ(n)(q)2, γ(n)(q)). We note that by definition

(σ(n)(q)2, γ(n)(q)) ∈ Π
(σ2,γ)
n (q). Also, we have ∆

−1/2
n χ(σ(n)(q)2, γ(n)(q),∆n) → ∞, as indicated

by (A.68) and ∆
−1/2
n ι(n) → ∞. It is hence more than enough to calculate C−1(σ2

n, γn) for all

{(σ2
n, γn) ∈ Π

(σ2,γ)
n (q) : n ≥ 1} satisfying ∆

−1/2
n χn → ∞, where we recall that χ2

n := χ2(σ2
n, γn,∆n).
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The current step considers this problem under the following restriction:

(γn)j = 0 for all n ≥ 1 and j ≥ d∆−1/2
n χne+ 1. (A.76)

The next step will show that restriction (A.76) is innocuous. To be able to invert C, an∞-dimensional

matrix, we introduce a reparameterization scheme. Concretely, with a scalar z and a (q + 1)-

dimensional vector φ, we define f(λ;φ) =
∑q

j=0(2− δj,0)φj cos jλ and f(λ; z, φ) = |1− zeiλ|2f(λ;φ).

We connect the parameterization (z, φ) to (σ2
n, γn), which belongs to Π

(σ2,γ)
n (q), by requiring

z = z(σ2
n, γn) := z∗n and φj = φj(σ

2
n, γn) := ρ̃h(∆n, d∆−1/2

n χne), (A.77)

where z∗n is defined in (A.23), with the argument pn in V(z∗n; ∆n, pn) set as d∆−1/2
n χne, and ρ̃h is

defined by (A.52), both appearing in the proof of Lemma A2. Because pn satisfies pn ≤ K∆
−1/2
n χn,

plus (σ2
n, γn) ∈ Π

(σ2,γ)
n (q) and ∆

−1/2
n χn → ∞, the results obtained in step 4 and step 5 of the proof

of Lemma A2 hold. Of these, we use the expression z∗n provided by (A.28) and the properties of Ṽ
given by (A.31) and (A.32). Because (γn)j = 0 for all j ≥ pn as required by (A.76), we have, as

made obvious by step 2 of the proof of Lemma A2 and the definition of (z, φ) given in (A.77), that

f(λ; z, φ) = f(λ;σ2
n, γn,∆n). (A.78)

We define C(z, φ) as a (q + 2)× (q + 2) matrix given by

C(z, φ) =
1

2π

∫ π

−π

(
∂ log f(λ; z, φ)

∂(z, φ)

)ᵀ ∂ log f(λ; z, φ)

∂(z, φ)
dλ. (A.79)

We further partition matrix C(z, φ) into four submatrices:

C(z, φ) =

(
Czz Czφ

Cφz Cφφ

)
. (A.80)

Here we require Czz to be a scalar. Such partition leads to uniquely defined submatrices. We can

write, for all 0 ≤ i, j ≤ q,

c(z, φ)1,1 =
1

2π

∫ π

−π

(
∂ log |1− zeiλ|2

∂z

)2

dλ =
2

1− z2
,

c(z, φ)1,j+2 =
1

2π

∫ π

−π

∂ log |1− zeiλ|2

∂z

∂ log f(λ;φ)

∂φj
dλ,

c(z, φ)i+2,j+2 =
1

2π

∫ π

−π

∂ log f(λ;φ)

∂φi

∂ log f(λ;φ)

∂φj
dλ =

1

2π

∫ π

−π

(2− δi,0) cos iλ

f(λ;φ)

(2− δj,0) cos jλ

f(λ;φ)
dλ.

Because of f(λ;φ) = Ṽ(eiλ; ∆n, q) as indicated by (A.77) and the properties of Ṽ given by (A.31)
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and(A.32), we have

K−1χ2
n ≤ f(λ;φ) ≤ Kχ2

n and

∣∣∣∣d2f(λ;φ)

dλ2

∣∣∣∣ ≤ Kχ2
n. (A.81)

Therefore, in view of the expression of z∗n provided by (A.28), all the entries of C can be rewritten,

for all 0 ≤ i, j ≤ q, as

Czz =
2

1− z2
, (Czφ)j+1 = − 2zj

f(0;φ)
+ o(χ−2

n ), (A.82)

(Cφφ)i+1,j+1 =
1

2π

∫ π

−π

(2− δi,0) cos iλ

f(λ;φ)

(2− δj,0) cos jλ

f(λ;φ)
dλ. (A.83)

We introduce an auxiliary (q + 1)× (q + 1) matrix C̃φφ:

(C̃φφ)i+1,j+1 :=
1

2π

∫ π

−π
f2(λ;φ) cos iλ cos jλdλ. (A.84)

In view of the expressions of Cφφ provided by (A.83), we have

(CφφC̃φφ)i+1,j+1 =
(2− δi,0)

(2π)2

q∑
k=−q

∫ π

−π
f2(λ;φ) cos iλeikλdλ

∫ π

−π

cos jλ′

f2(λ′;φ)
e−ikλ′dλ′.

It is straighforward to calculate, using the orthogonality of complex exponentials, that

(2− δi,0)

(2π)2

∞∑
k=−∞

∫ π

−π
f2(λ;φ) cos iλeikλdλ

∫ π

−π

cos jλ′

f2(λ′;φ)
e−ikλ′dλ′ = δi,j .

On the other hand, according to (A.81) and the proof of Theorem II.4.7 of Zygmund (2002), we

have for (z, φ) satisfying (A.77), under {(σ2
n, γn) ∈ Π

(σ2,γ)
n (q) : n ≥ 1} and ∆

−1/2
n χn → ∞, and for

k ≥ q + 1 and 0 ≤ i ≤ q,∣∣∣∣χ−4
n

∫ π

−π
f2(λ;φ) cos iλeikλdλ

∣∣∣∣+

∣∣∣∣χ4
n

∫ π

−π
f−2(λ;φ) cos iλeikλdλ

∣∣∣∣ ≤ K

(k − i)2
.

We hence are able to write CφφC̃φφ = Iq+1 + A, with |Ai,j | ≤ K q+1−i∨j
(q+1−i)2(q+1−j)2 , which immediately

gives

C−1
φφ = C̃φφ − C̃φφ(Iq+1 +A)−1A. (A.85)

Because of (A.81) and Proposition 4.5.3 in Brockwell and Davis (1991), we have χ4
nCφφ ∼ Iq+1 and

χ−4
n C̃φφ ∼ Iq+1, where ∼ is defined based on Loewner partial order. We hence have (Iq+1 +A)(Iq+1 +

A)ᵀ ∼ Iq+1 and therefore ((Iq+1 +A)(Iq+1 +A)ᵀ)−1 ∼ Iq+1. This allows us to conclude that

‖χ−4
n C̃φφ(Iq+1 +A)−1‖ ≤ K,
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where ‖ · ‖ stands for the matrix operator norm. We hence have, by Cauchy-Schwarz inequality,

q∑
i=0

|χ−4
n (C̃φφ(Iq+1 +A)−1A)i+1,j+1| ≤ K

(
q

q∑
i=0

A2
i+1,j+1

)1/2
≤

K
√
q

(q + 1− j)2
. (A.86)

Because of (A.80), block matrix inversion states that for 0 ≤ i, j ≤ q,

C−1(z, φ)1,1 = (Czz − CzφC−1
φφCφz)

−1,

C−1(z, φ)1,j+2 = −(Czz − CzφC−1
φφCφz)

−1(CzφC
−1
φφ )j+1,

C−1(z, φ)i+2,j+2 = (C−1
φφ )i+1,j+1 + (CzφC

−1
φφ )i+1(Czz − CzφC−1

φφCφz)
−1(CzφC

−1
φφ )j+1.

We therefore have obtained all the elements needed for calculation of C−1(z, φ). Indeed, we have

Czz and Czφ, provided by (A.82), and C−1
φφ , provided by (A.85) and (A.86). It is straightforward to

calculate that for (z, φ) satisfying (A.77) and under {(σ2
n, γn) ∈ Π

(σ2,γ)
n (q) : n ≥ 1} and ∆

−1/2
n χn →

∞,

C−1(z, φ)1,1 = (Czz − CzφC−1
φφCφz)

−1 =
1− z2

2z2q
+ o(∆1/2

n χ−1
n ),

C−1(z, φ)1,j+2 =
1− z2

2z2q
f(0;φ)zj +O

(∆
1/2
n χ−1

n
√
q

(q + 1− j)2

)
,

C−1(z, φ)i+2,j+2 = C̃φφ − C̃φφ(Iq+1 +A)−1A+
1− z2

2z2q
f2(0;φ)zi+j +O

( ∆
1/2
n χ−1

n
√
q

(q + 1− i ∨ j)2

)
.

Now we move on to calculate C−1(σ2, γ). In view of the definition of c specified in step 1, we realize

that

C(σ2, γ) =
1

2π

∫ π

−π

(
∂ log f(λ;σ2, γ,∆n)

∂(σ2, γ)

)ᵀ
∂ log f(λ;σ2, γ,∆n)

∂(σ2, γ)
dλ. (A.87)

According to the inverse function theorem, plus the equality f(λ; z, φ) = f(λ;σ2, γ,∆n) from (A.78)

and the definition of C(z, φ) specified in (A.79), we have that under the restriction (A.76),

C−1(σ2
n, γn) =

∂(σ2
n, γn)

∂(z, φ)
C−1(z, φ)

(
∂(σ2

n, γn)

∂(z, φ)

)ᵀ

.

The mapping between (σ2
n, γn) and (z, φ) specified in (A.77) indicates that

∂σ2
n

∂z
= −2(1− z)f(0;φ),

∂σ2
n

∂φk
= (2− δk,0)(1− z)2,

∂(γn)j
∂φk

= zδk,j − (1− z)2(k − j)+,
∂(γn)j
∂z

= φj + (1− z)
q∑

k=0

φk(k − j)+.

Here and below, we use x+ = max{x, 0}. Some algebra yields that under {(σ2
n, γn) ∈ Π

(σ2,γ)
n (q) : n ≥
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1}, ∆
−1/2
n χn →∞, and the restriction (A.76), and for all 0 ≤ j ≤ q,

C−1(σ2
n, γn)1,1 = 4∆−2

n (1− z)3f2(0;φ) + 2∆−2
n (1− z)4qf2(0;φ) + o

(
∆−1/2
n χn + q

)
, (A.88)

C−1(σ2
n, γn)1,j+2 = −∆−1

n (1− z)2f2(0;φ)
(

1 + 2(1− z)(q − j) +
1

2
(1− z)2(q − j)2

)
+O
(
χ2
n(j + 1)−2

)
+ o
(
χ2
n + ∆n(q − j)2

)
, (A.89)

C−1(σ2
n, γn)i+2,j+2 =

(
1 + o(1)

)[ 1

2π

∫ π

−π
f2(λ;φ) cos iλ cos jλdλ

+f2(0;φ)
(1

2
(1− z)4

q∑
k=0

(k − i)+(k − j)+ −
1

2
z(1− z)2|i− j|

+(1− z2)
(
z + (q − j + 1)(1− z)

)(
z + (q − i+ 1)(1− z)

))]
. (A.90)

Step 5. (Properties of C−1: General case) This step shows that the restriction (A.76) is not

needed to obtain (A.88), (A.89), and (A.90), given {(σ2
n, γn) ∈ Π

(σ2,γ)
n (q) : n ≥ 1} and ∆

−1/2
n χn →∞.

Clearly, we only need to consider the case in which q > d∆−1/2
n χne, otherwise the restiction (A.76)

is automatically satisfied from the definition of Π
(σ2,γ)
n (q). Using the fact that ∂f(λ;σ2,γ,∆n)

∂(σ2,γ)
does not

depend on (σ2, γ), we can write

C(σ2, γ) =
1

2π

∫ π

−π

(
∂ log f(λ;σ2, γ̃(p, γ),∆n)

∂(σ2, γ)

)ᵀ
∂ log f(λ;σ2, γ̃(p, γ),∆n)

∂(σ2, γ)

×
[
1 +

∞∑
j=1

(
− V(eiλ; ∆n,−p)
V(eiλ; ∆n, p)

)j]2

dλ. (A.91)

Here we recall that γ̃(p, γ) = (γ0, γ1, . . . , γp, 0, . . . , 0)ᵀ, V(z; ∆n, p), and V(z; ∆n,−p) are all intro-

duced in step 2 of the proof of Lemma A2 and we use (A.14). We observe the apparent fact that

without the multiplicative term
[
1 +

∑∞
j=1

(
− V(eiλ;∆n,−p)
V(eiλ;∆n,p)

)j]2
, the right-hand side of (A.91) would

just be C(σ2, γ̃(p, γ)). We can then conclude, following the proof of Proposition 4.5.3 in Brockwell

and Davis (1991) and using the bound on
∣∣∣V(eiλ;∆n,−p)
V(eiλ;∆n,p)

∣∣∣ provided by (A.42), that

(1−Kp−2)C(σ2, γ̃(p, γ)) ≤ C(σ2, γ) ≤ (1 +Kp−2)C(σ2, γ̃(p, γ)), (A.92)

where ≤ is the Loewner partial order. We let pn = d∆−1/2
n χne. Then γ̃(pn, γn) satisfies (A.76).

Since ∆
−1/2
n χn → ∞, we have pn → ∞ and hence {(σ2

n, γ̃(pn, γn)) ∈ Π
(σ2,γ)
n (q) : n ≥ 1} and

∆−1
n χ2(σ2

n, γ̃(pn, γn),∆n)→∞. Therefore, the expressions (A.88), (A.89), and (A.90) in step 4 apply

to C−1(σ2
n, γ̃(pn, γn)). If we further apply (A.92), plus that f(λ; γ̃(pn, γn))/f(λ; γn) → 1 uniformly

over λ, we have C(σ2, γ)−1 = C(σ2, γ̃(p, γ))−1
∑∞

j=0

([
C(σ2, γ) − C(σ2, γ̃(p, γ))

]
C(σ2, γ)−1

)j
and

direct calculation leads to the fact that (A.88), (A.89), and (A.90) indeed hold, for all parameter

sequences {(σ2
n, γn) ∈ Π

(σ2,γ)
n (q) : n ≥ 1} satisfying ∆

−1/2
n χn →∞.

Step 6. (Bound on σ(n)(qn)2−CT ) Given the relation (A.68) and ∆
−1/2
n ι(n) →∞, we immediately
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obtain ∆−1
n χ2(σ(n)(q)2, γ(n)(q),∆n)→∞. Also, we have (σ(n)(q)2, γ(n)(q)) ∈ Π

(σ2,γ)
n (q) by definition.

Thus, in view of step 5, the relations (A.88), (A.89), and (A.90) apply to C−1(σ(n)(q)2, γ(n)(q)) (of

course, now with z = z(σ(n)(q)2, γ(n)(q)) and φj = φj(σ
(n)(q)2, γ(n)(q))). Using the expression of z∗n

given by (A.23) (see explanation after (A.77)), the bound on f(λ;φ) provided by (A.81), and the

relation (A.68), we can write for 0 ≤ j ≤ q,

C−1(σ(n)(q)2, γ(n)(q))1,1 = 4∆−1/2
n C

3/2
T f1/2(0;φ) + 2C2

T q + o
(

∆−1/2
n ι(n) + q

)
, (A.93)

C−1(σ(n)(q)2, γ(n)(q))1,j+2 = −CT f(0;φ)
(

1 + 2(1− z)(q − j) +
1

2
(1− z)2(q − j)2

)
+O
(

(ι(n))2(j + 1)−2
)

+ o
(

(ι(n))2 + ∆n(q − j)2
)
, (A.94)

C−1(σ(n)(q)2, γ(n)(q))i+2,j+2 =
(
1 + o(1)

)[ 1

2π

∫ π

−π
f2(λ;φ) cos iλ cos jλdλ

+f2(0;φ)
(1

2
(1− z)4

q∑
k=0

(k − i)+(k − j)+ −
1

2
z(1− z)2|i− j|

+(1− z2)
(
z + (q − j + 1)(1− z)

)(
z + (q − i+ 1)(1− z)

))]
. (A.95)

In view of the bounds on c provided by (A.73), (A.74), and (A.72) and the relation (A.68), we have

for all 2 ≤ i ≤ q + 2 and k ≥ q + 3,

|C−1
1,1c1,k|+

q+2∑
j=2

|C−1
1,j cj,k| . (ι(n))−2, |C−1

i,1 |
( ∞∑
l=q+3

|c1,l|2
)1/2

+

q+2∑
j=2

|C−1
i,j |
( ∞∑
l=q+3

|cj,l|2
)1/2

.
∆

3/4
n q

(ι(n))3/2
+1,

where C−1 and c are evaluated at (σ(n)(q)2, γ(n)(q)). Subsituting this result back into (A.63) imme-

diately proves the lemma.

Lemma A6. Suppose Assumptions 1 - 4 hold. For all sequences {qn} and under ∆
−1/2
n ι(n) ≤ K, it

holds that for all 0 ≤ j ≤ qn,

∣∣σ(n)(qn)2 − CT
∣∣ ≤ K∆−1

n

∥∥γ(n)
∥∥

1,(qn)
,
∣∣γ(n)(qn)j − γ(n)

j

∣∣ . (qn + 1)
∥∥γ(n)

∥∥
(qn)

.

Proof. Step 1. (Characterization of σ(n)(qn)2 − CT ) Throughout the proof, we omit writing the

subscript n of qn. We set the bijection βn as

βn(σ2, γ)j =
∆−1
n

2π

∫ π

−π
f(λ;σ2, γ,∆n)eijλdλ, 0 ≤ j ≤ q + 1. (A.96)

In view of (A.96), we have σ(n)(q)2 =
∑q+1

j=−q−1 β
(n)(q)|j| and γ(n)(q)j = −∆n

∑q+1
i=j+1(i− j)β(n)(q)i.

The current lemma, therefore, would follow from

‖β(n)(q)− β̄(n)‖1 ≤ K∆−1
n ‖γ(n)‖(q). (A.97)
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Trivially, (A.97) holds under ∆−1
n ‖γ(n)‖1,(qn) ≥ 1

K , given ∆
−1/2
n ι(n) ≤ K and Assumption 4. The

subsequence argument indicates that we only need to consider the case in which ‖γ(n)‖1,(q) = o(∆n).

In view of the definitions of L̄?n(β), β(n)(q), and Πβ
n(q), and Assumption 4, we have for all 0 ≤ j ≤ q+1,

∂

∂βj
L̄?n(β(n)(q)) = 0. (A.98)

On the other hand, using (A.96), we obtain that for all 0 ≤ j ≤ q + 1,

− 2

nT

1

2− δ0,j

∂L̄?n(β)

∂βj
= A(β)j +B(β)j , (A.99)

where A(β)j =
∑q+1

k=0(2 − δk,0)c(β)j,k(β̄
(n)
k − βk) and B(β)j =

∑∞
k=q+2 2c(β)j,kβ̄

(n)
k . Here we use

the shorthand notation c(β)j,k = 1
2π

∫ π
−π

cos jλ cos kλ
f2(λ;β)

dλ, where f(λ;β) =
∑∞

j=−∞ β|j|e
ijλ. In view of

(A.99), if we let C(β) be the (q + 2) × (q + 2) matrix whose entries are C(β)i,j = c(β)i,j for all

0 ≤ i, j ≤ q + 1, the first-order condition (A.98) can be rewritten as

β̄
(n)
j − β

(n)(q)j =
2

2− δj,0

q+1∑
i=0

C−1(β(n)(q))i,j

∞∑
k=q+2

c(β(n)(q))i,kβ
(n)
k . (A.100)

Step 2. (Properties of c and C−1) In this step we provide bounds on c and C−1, from which

we would immediately prove the current lemma. We first note the connection between β(n)(q) and

(σ(n)(q)2, γ(n)(q)) and that (σ(n)(q)2, γ(n)(q)) ∈ Π
(σ2,γ)
n (q). Then according to (A.18) and (A.22),

Assumption 4 and the construction of Π
(σ2,γ)
n (q), which we recall comes from (3.11), indicate that

under ∆
−1/2
n ι(n) ≤ K and ‖γ(n)‖1,(q) = o(∆n), for n large enough and uniformly over λ,

f(λ;β(n)(q)) ∼ 1 and
d2f(λ;β(n)(q))

dλ2
≤ K. (A.101)

An immediate result of (A.101) is that, following the proof of Theorem II.4.7 of Zygmund (2002) ,

the definition of c(β)j,k as Fourier coefficients of f−2(λ;β) indicates that

|c(β(n)(q))j,k| ≤ K(|j − k|+ 1)−2. (A.102)

Now we analyze C−1. We introduce an auxiliary (q + 2)× (q + 2) matrix C̃(β):

C̃(β)i,j :=
1

2π

∫ π

−π
f2(λ;β)(2− δi,0)(2− δj,0) cos iλ cos jλdλ, with 0 ≤ i, j ≤ q + 1.

If we compare (A.101) with (A.81), we can repeat the derivation of (A.85) and (A.86) and conclude

that
∑q+1

j=0 |C̃(β(n)(q))| ≤ K for all 0 ≤ i ≤ q + 1 and that

C−1(β(n)(q)) = C̃(β(n)(q))− C̃(β(n)(q))(Iq+2 +A)−1A, (A.103)
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where the (q + 2) × (q + 2) matrix A satisfies
∑q+1

i=0 |(C̃(β(n)(q))(Iq+1 + A)−1A)i,j | ≤
K
√
q

(q+2−j)2 . We

then immediately have for all 0 ≤ i ≤ q + 1,

q+1∑
j=0

|C−1(β(n)(q))i,j | ≤ K. (A.104)

Applying Hölder’s inequality to the expression of β
(n)
j − β(n)(q)j provided in (A.100) leads to

q+1∑
j=0

|β̄(n)
j − β

(n)(q)j | ≤ 2‖β̄(n)‖(q+1)

q+1∑
j=0

q+1∑
i=0

|C−1(β(n)(q))i,j |
( ∞∑
k=q+2

|c(β(n)(q))i,k|2
)1/2

.

Therefore, in view of (A.102) and (A.104), we have already proved (A.97), and thereby the current

lemma, by observing that ‖β̄(n)‖1,(q+1) = O(∆−1
n ‖γ(n)‖1,(q)).

Lemma A7. Suppose Assumptions 1 - 4 hold and qn ≤ Kn1/3. It holds that under either n1/2ι(n) →
∞ or n1/2ι(n) ≤ K,

η̄ᵀΞn(β(n)(qn))− η̄ᵀΞA,n(β(n)(qn)) = oP

(
n−1/2

√
qn + 1 + n−1/4

√
ι(n)
)
. (A.105)

Proof. Step 1. (Main proof) We only consider the case in which ι(n) ≥ K−1, as the problem gets

harder as noise becomes larger. Intuitively, when noise becomes small enough (∆−1
n (ι(n))2 ≤ K),

the data-generating process is the same as that of classic time-series models. In this case, (A.105)

becomes

η̄ᵀΞn(β(n)(qn))− η̄ᵀΞA,n(β(n)(qn)) = oP(n−1/4). (A.106)

First, we define Ω′n as the set of all ω such that K−1 ≤ n∆n ≤ K (it should not be confused with

the matrix Ωn) and observe that

n−1nt =
1

T

∫ t

0
ξ−1
s ds+ oP(1) and lim

n→∞
P(Ω′n) = 1, (A.107)

which are direct results of Lemma 14.1.5 of Jacod and Protter (2011) and Assumption 2. Then we let

the bijection βn be the identity function. For this choice of βn, we have ∂σ2
n = (1, 0q+1). Moreover,

we observe that ∂Ξ̄?n(β(n)(qn)) = 2n−1
T nC(σ(n)(qn), γ(n)(qn)), where the matrix C is introduced in

(A.75) and satisfies (A.87). In particular, (A.93) and (A.94) indicate that in restriction to Ω′n we

have |∂Ξ̄?n(β(n)(qn))−1
1,1| ≤ Kn1/2 and |∂Ξ̄?n(β(n)(qn))−1

1,j | ≤ K for 2 ≤ j ≤ qn+2. Therefore, according

to (A.107), for showing (A.106) it is sufficient to prove that

E
∣∣1Ω′n

(
Ξn(β(n)(qn))1 − ΞA,n(β(n)(qn))1

)∣∣ = o(n−3/4), (A.108)
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and for each 2 ≤ j ≤ qn + 2,

E
∣∣1Ω′n

(
Ξn(β(n)(qn))j − ΞA,n(β(n)(qn))j

)∣∣ = o(n−3/4). (A.109)

Now we show (A.108). The same reasoning proves (A.109). Below, we suppress the dependence of

β(n), σ(n), and γ(n) on qn. We can rewrite (A.108) as

E
∣∣∣1Ω′n

∂

∂β1
log det(Σn(β(n))Ωn(β(n))−1)

=:Ra

+ n−1/4
1Ω′nY

ᵀ
n

∂

∂β1
(Σn(β(n))−1 − Ωn(β(n))−1)Yn

=:Rb

∣∣∣ = o(n1/4).

(A.110)

We hence only need prove E|Ra| = o(n1/4) and E|Rb| = o(n1/4). Observe that ∂
∂β1

Σn(β) =
∂
∂β1

Ωn(β) = ∆n. Then we can write

Ra = 1Ω′n∆ntr(Σn(β(n))−1−Ωn(β(n))−1), Rb = −1Ω′n∆nY
ᵀ
n (Σn(β(n))−2−Ωn(β(n))−2)Yn. (A.111)

Here we use log detA = tr logA. The challenge we face is that we do not have an analytical expression

for Σ−1
n . However, we observe that

Σ−1
n = Ω−1

n − Ω−1
n RnΩ−1

n + Ω−1
n RnΣ−1

n RnΩ−1
n , with Rn(β) := Σn(β)− Ωn(β). (A.112)

Although in the last term on the right-hand side, Σ−1
n still appears; later we show that we can replace

it with Ω−1
n for the purpose of bounding Ra and Rb. Now we apply (A.112) to (A.111). Introduce

simplifying notation

Ra1(β) := tr(Ω−1
n RnΩ−1

n ), Ra2(β) := tr(Ω−1
n RnΣ−1

n RnΩ−1
n ), Rb1(β) := Y ᵀ

n Ω−1
n RnΩ−2

n Yn,

Rb2(β) := Y ᵀ
n Ω−1

n RnΣ−1
n RnΩ−2

n Yn, and Rb3(β) := Y ᵀ
n Ω−1

n RnΣ−2
n RnΩ−1

n Yn. (A.113)

Here we drop the argument β of Ωn and Σn. Then we can rewrite (A.111) as

∆−1
n Ra = 1Ω′n

(
−Ra1(β(n)) +Ra2(β(n))

)
, ∆−1

n Rb = 1Ω′n

(
2Rb1(β(n))− 2Rb2(β(n))−Rb3(β(n))

)
.

In view of the triangle inequality, the desired result (A.110) follows from the fact that for all A ∈
{Ra1,Ra2,Rb1,Rb2,Rb3}, E|A(β(n))| = o(n5/4).

Step 2. (Bounds of Σ) In this step we prove

Σn((σ(n))2, γ
(n)
0 ) ≤ KΣn((σ(n))2, γ(n)). (A.114)

Namely, we bound Σn((σ(n))2, γ(n)) from below by Σn((σ(n))2, γ
(n)
0 ). For all x = (x1, x2, . . . , xnT )ᵀ ∈

RnT , define x̃ = (x̃1, x̃2, . . . , x̃nT+1)ᵀ ∈ RnT+1 by x̃j = xj−1 − xj with x0 = xnT+1 = 0. We deduce
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(A.114) from

xᵀΣn((σ(n))2, γ(n))x = (σ(n))2∆n‖x‖2 + x̃ᵀΓ(γ(n))n+1x̃ and Γ(γ(n))n+1 ∼ γ(n)
0 In+1. (A.115)

Here we define Γ(γ(n))n+1 ∈ MnT+1 by (Γ(γ(n))n+1)ij = 1
2π

∫ π
−π f(λ; γ(n))ei(i−j)λdλ. In+1 is the

(nT + 1)× (nT + 1) identity matrix. The first claim in (A.115) holds by definition of Σn. The second

claim in (A.115) comes from Proposition 4.5.3 in Brockwell and Davis (1991) by applying (A.18) and

(A.22).

Step 3. (Useful estimates) We provide some estimates in this step. We start by introducing some

notation:

A(1)j := (Ω−1
n Yn)j , A(2)ij := (Ω−1

n )i,j − (Ω−1
n )i,j+1, and A(3)ij := A(2)ij −A(2)i+1,j .

We have the following four estimates:{
E(1Ω′nA(1)2

hn
) ≤ Khn, E(1Ω′n(A(1)hn −A(1)hn+1)2) ≤ K,

|1Ω′n(Ω−1
n )1hn | ≤ K, |1Ω′nA(3)hn,ln | ≤ Kn−1/2 +K1{|hn−ln|≤2}.

All of the estimates are direct results of Lemma A2. Note A(3)i,j is a linear combination of four

entries of Ω−1
n . Due to such a combination, for |hn − ln| ≥ 3, the magnitude of A(3)hn,ln is reduced

by a factor of n compared with (Ω−1
n )i,j ∼

√
n.

Step 4. (Bound on Rb2(β(n))) In this step we show that E|Rb2(β(n))| = o(n5/4). We obtain results

in other cases following the same reasoning. Note that Σn is positive definite, as it is a covariance

matrix. Then the definition of Rb2(β) given by (A.113) and the Cauchy-Schwarz inequality indicate

that E|Rb2(β(n))| = o(n5/4) follows from

E
∣∣1Ω′nY

ᵀ
n Ω−1

n RnΣ−1
n RnΩ−1

n Yn
∣∣ = o(n1/4) and E

∣∣1Ω′nY
ᵀ
n Ω−2

n RnΣ−1
n RnΩ−2

n Yn
∣∣ = o(n9/4). (A.116)

Here Ωn, Rn, and Σn are evaluated at β(n). Now we show the first claim in (A.116). The second

comes from the same reasoning. In Step 1 we state that we can replace Σ−1
n with Ω−1

n . Obviously,

we can do so if Σ−1
n ≤ KΩ−1

n . Here ≤ stands for Loewner partial order. Indeed, Corollary 7.7.4

in Horn and Johnson (2013) states that for any two Hermitian matrices A and B, if A < B, then

A−1 > B−1. Hence, we only need Ωn ≤ KΣn. On the one hand, we have (A.114). On the other

hand, in view of the definitions of Ωn and Vn, we conclude that

Ωn((σ(n))2, γ(n)) . OnVn((σ(n))2, γ
(n)
0 )On = Ωn((σ(n))2, γ

(n)
0 ) = Σn((σ(n))2, γ

(n)
0 ). (A.117)

Here the first equality can be verified using Lemma A1. Given (A.114) and (A.117), we have
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Ωn((σ(n))2, γ(n)) ≤ KΣn((σ(n))2, γ(n)). Therefore, the first claim in (A.116) follows from

E
∣∣1Ω′nY

ᵀ
n Ω−1

n RnΩ−1
n RnΩ−1

n Yn
∣∣ = o(n1/4), (A.118)

with Ωn, Rn and Σn evaluated at β(n).

Step 5. (Proof of (A.118)) First, we derive the expression of Rn. Using Lemma A1 and the

definition of {Fhn : 0 ≤ h ≤ n} given by (A.3) therein, we write

Ωn(σ2, γ) = σ2∆nIn +

qn∑
h=0

γh(2Fhn − Fh+1
n − Fh−1

n ). (A.119)

Here Fhn = 0n×n for h = −1 by convention. On the other hand, we rewrite Σn defined by (3.7) as

Σn(σ2, γ) = σ2∆nIn +

qn∑
h=0

γh(2Gh
n −Gh+1

n −Gh−1
n ). (A.120)

To write Rn in a more compact form, define Kh
n, K̃h

n ∈MnT by (Kh
n)ij = 1{h=i+j} − 1{h+1=i+j} and

(K̃h
n)ij = (Kh

n)n+1−i,n+1−j . Obviously, Kh
n+ K̃h

n = Gh
n−Gh+1

n −Fhn+Fh+1
n ; hence (A.119) and (A.120)

lead to

Rn(β(n)) = Σn(β(n))− Ωn(β(n)) =

qn−1∑
h=0

(γ
(n)
h − γ(n)

h+1)(Kh
n + K̃h

n). (A.121)

Here γ
(n)
qn+1 = 0 by convention. Next, we apply (A.121) to (A.118). In view of the symmetry between

Kh
n and K̃h

n, we can replace Rn(β(n)) in (A.118) with R̃n(β(n)) :=
∑qn−1

h=0 (γ
(n)
h − γ

(n)
h+1)Kh

n. Then

(A.118) becomes

E
∣∣∣1Ω′n

qn−1∑
h=0

qn−1∑
l=0

(γ
(n)
h − γ(n)

h+1)(γ
(n)
l − γ(n)

l+1)Y ᵀ
n Ω−1

n Kh
nΩ−1

n Kl
nΩ−1

n Yn

∣∣∣ = o(n1/4). (A.122)

From the definition of γ(n) and applying Hölder’s inequality, we only need prove for all n1/3hn ≤ K
and n1/3ln ≤ K that

E
∣∣1Ω′nY

ᵀ
n Ω−1

n Khn
n Ω−1

n Kln
n Ω−1

n Yn
∣∣ ≤ Kn1/4hnln. (A.123)

In view of the notation introduced in Step 3, plus the definition of Kh
n, we have that

Y ᵀ
n Ω−1

n Kh
nΩ−1

n Kl
nΩ−1

n Yn =
h−1∑
i=1

l−1∑
j=1

A(1)iA(1)jA(3)h−i,h−j −A(1)h

l−1∑
j=1

A(1)jA(2)1,l−j

−A(1)l

h−1∑
i=1

A(1)iA(2)1,h−j +A(1)hA(1)l(Ω
−1
n )11. (A.124)

We hence deduce (A.123) by applying the Cauchy-Schwarz inequality and the four estimates provided
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in Step 3 to (A.124).

Lemma A8. Suppose Assumptions 1 - 4 hold and qn ≤ Kn1/3. It holds that under either n1/2ι(n) →
∞ or n1/2ι(n) ≤ K,

η̄ᵀΞA,n(β(n)(qn))− η̄ᵀΞD,n(β(n)(qn)) = oP

(
n−1/2

√
qn + 1 + n−1/4

√
ι(n)
)
. (A.125)

Proof. All of the contents of the proof of Lemma A7 until (A.111) remain valid if we replace Σn with

Ωn, Ωn with ΩD,n, and (A.105) with (A.125). Unlike the situation there, we do know the analytical

expressions of both Ω−1
n and Ω−1

D,n, as given by Lemma A2. Note that ΩD,n is a block-diagonal matrix

and we apply Lemma A2 to each block. Instead of (A.112), we use

Ω−1
n = Ω−1

D,n − Ω−1
n RnΩ−1

D,n and Rn := Ωn − ΩD,n.

The justification for doing so is the same as the one stated at the end of the proof of Lemma A7.

Indeed, by definition, Rn here has only nonzero entries near the top-left or right-bottom corners of

the blocks ΩD,n consists of. According to Lemma A2, (Ω−1
D,n)i,j shrinks when either i or j approaches

the borders of those blocks. Moreover, locally Rn also maintains a structure similar to (A.121); See

the comment at the end of the proof of Lemma A7. Hence, we obtain (A.125) following the same

reasoning as in the proof of Lemma A7. Note that we will skip Steps 2 and 4 there, since we know

both Ω−1
D,n and Ω−1

n .

Lemma A9. Suppose Assumptions 1 - 4 hold. It holds that for all sequences qn ≤ Kn1/3 and under

either n1/2ι(n) →∞ or n1/2ι(n) ≤ K,

sup

(σ2,γ)∈Π
(σ2,γ)
n (qn)

∣∣∣∣ Ln(σ2, γ)− L̄?n(σ2, γ)

L̄?n(CT , γ(n))− L̄?n(σ2, γ) + n

∣∣∣∣ = oP(1). (A.126)

Proof. Step 1. (Technical results) We start by defining a family of subsets of Π
(σ2,γ)
n (q) indexed by

α1 and α2:

Π(σ2,γ)
n (q, α1, α2) = {(σ2, γ) ∈ Π(σ2,γ)

n (q) : α1 ≤ χ2(σ2, γ,∆n) ≤ α2}.

Obviously, Π
(σ2,γ)
n (q) = Π

(σ2,γ)
n (q, 0, α) ∪Π

(σ2,γ)
n (q, α,∞) for all α. In this step we aim to prove that

for all αn →∞ and all K fixed,

sup

(σ2,γ)∈Π
(σ2,γ)
n (qn,αn∆n,∞)

∣∣∣∣ LA,n(σ2, γ)− L̄?n(σ2, γ)

L̄?n(CT , γ(n))− L̄?n(σ2, γ) + n

∣∣∣∣ = oP(1), (A.127)

and sup

(σ2,γ)∈Π
(σ2,γ)
n (qn,0,K∆n)

∣∣∣∣ LA,n(σ2, γ)− L̄?n(σ2, γ)

L̄?n(CT , γ(n))− L̄?n(σ2, γ) + n

∣∣∣∣ = oP(1). (A.128)
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We consider the case in which n1/2ι(n) ≤ K. The case in which n1/2ι(n) →∞ follows from the same

reasoning. Straightforwardly, it holds that in restriction to Ω′n,

sup

(σ2,γ)∈Π
(σ2,γ)
n (qn,αn∆n,∞)

∣∣∣L̄?n(CT , γ
(n))− L̄?n(σ2, γ)− nT

2
log

χ2(σ2, γ,∆n)

χ2(CT , γ(n),∆n)

∣∣∣ ≤ Kn.
Because χ2(σ2, γ,∆n) ≥ αn∆n and χ2(CT , γ

(n),∆n) ∈ (K−1∆n,K∆n), it holds that in restriction

to Ω′n,

inf
(σ2,γ)∈Π

(σ2,γ)
n (qn,αn∆n,∞)

1

nT
|L̄?n(CT , γ

(n))− L̄?n(σ2, γ)| → ∞.

Hence, in view of the triangle inequality and the definitions of LA,n and L̄?n, plus using (A.107), to

obtain (A.127) it is enough to show that

sup

(σ2,γ)∈Π
(σ2,γ)
n (qn,αn∆n,∞)

Y ᵀ
n Ωn(σ2, γ)−1Yn = OP(n) (A.129)

and sup

(σ2,γ)∈Π
(σ2,γ)
n (qn,αn∆n,∞)

1Ω′n

2π

∫ π

−π

f(λ;CT , γ
(n),∆n)

f(λ;σ2, γ,∆n)
dλ ≤ K.

The second bound is obviously true and we now show the first bound (A.129). Lemma A2 states

that we can write

Y ᵀ
n Ωn(σ2, γ)−1Yn = Y ᵀ

n

∞∑
h=0

ρh(σ2, γ,∆n)FhnYn, (A.130)

where ρh(σ2, γ,∆n) satisfies (A.4) uniformly over (σ2, γ) ∈ Π
(σ2,γ)
n (qn, αn∆n,∞). On the other hand,

with n1/2ι(n) ≤ K and Assumption 4, we conclude that

E|Y ᵀ
n FhnYn| ≤ Kh−2 +Kn−1/2. (A.131)

The combination of (A.130), (A.4), (A.131), and (A.107), plus Hölder’s inequality, readily yields

(A.129) and hence (A.127) is proved. We now prove (A.128). Since L̄?n(CT , γ
(n)) − L̄?n(σ2, γ) is

always nonnegative, in view of the definitions of LA,n and L̄?n, (A.128) directly comes from

sup

(σ2,γ)∈Π
(σ2,γ)
n (qn,0,K∆n)

∣∣∣Y ᵀ
n Ωn(σ2, γ)−1Yn −

1

2π

∫ π

−π

f(λ;CT , γ
(n),∆n)

f(λ;σ2, γ,∆n)
dλ
∣∣∣ = oP(n). (A.132)

The uniform convergence (A.132) comes from establishing pointwise convergence and stochas-

tic equicontinuity, following the same reasoning as for Theorem 2.1 and Corollary 2.2 in Newey

(1991). Applying steps 1 and 7 of the proof of Lemma A2, we have, for all deterministic
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{(σ2
n, γn) ∈ Π

(σ2,γ)
n (qn, 0,K∆n) : n ≥ 1} and under n1/2ι(n) ≤ K,

Y ᵀ
n Ωn(σ2

n, γn)−1Yn −
1

2π

∫ π

−π

f(λ;CT , γ
(n),∆n)

f(λ;σ2
n, γn,∆n)

dλ = oP(n).

On the other hand, using (A.131) and (A.7), plus Assumption 2, we can repeat the reasoning for

deriving (A.129) to conclude that for all 0 ≤ j ≤ qn and with Ω′n introduced above (A.107),

E
(
1Ω′n sup

(σ2,γ)

∣∣∣ ∂
∂σ2

Y ᵀ
n Ωn(σ2, γ)−1Yn

∣∣∣) ≤ Kn, E
(
1Ω′n sup

(σ2,γ)

∣∣∣∆n
∂

∂γj
Y ᵀ
n Ωn(σ2, γ)−1Yn

∣∣∣) ≤ Kn,
sup

(σ2,γ)

∣∣∣1Ω′n

∂

∂σ2

∫ π

−π

f(λ;CT , γ
(n),∆n)

f(λ;σ2
n, γn,∆n)

dλ
∣∣∣ ≤ K, sup

(σ2,γ)

∣∣∣1Ω′n∆n
∂

∂γj

∫ π

−π

f(λ;CT , γ
(n),∆n)

f(λ;σ2
n, γn,∆n)

dλ
∣∣∣ ≤ K,

from which the stochastic equicontinuity follows. Here the range over which the supremums are

taken is (σ2, γ) ∈ Π
(σ2,γ)
n (qn, 0,K∆n) and the additional factor ∆n compared with Assumption 3A

in Newey (1991) arises because of Assumption 4 and the definition of Π
(σ2,γ)
n (qn, 0,K∆n).

Step 2. (Conclusion) In view of (A.127) and (A.128), plus using the subsequence argument, we

obtain

sup

(σ2,γ)∈Π
(σ2,γ)
n (qn)

∣∣∣∣ LA,n(σ2, γ)− L̄?n(σ2, γ)

L̄?n(CT , γ(n))− L̄?n(σ2, γ) + n

∣∣∣∣ = oP(n). (A.133)

Further, we have, following the reasoning in the proof of Lemma A7 and using Lemma A2, that

sup

(σ2,γ)∈Π
(σ2,γ)
n (qn)

∣∣∣∣ Ln(σ2, γ)− LA,n(σ2, γ)

L̄?n(CT , γ(n))− L̄?n(σ2, γ) + n

∣∣∣∣ = oP(1). (A.134)

Note that the bound we require here is less sharp and that only Σ−1
n and Ω−1

n themselves are involved,

as we do not take derivatives here. The lemma is a direct result of (A.133) and (A.134).

Lemma A10. Suppose Assumptions 1 - 4 hold. For all sequences {qn} and {q′n}, it holds that with

probability approaching one,

1

nT
L̄?n(σ(n)(qn)2, γ(n)(qn))− 1

nT
L̄?n(σ(n)(q′n)2, γ(n)(q′n)) ∼ ψ4

n(‖κ̃(n)‖2(q′n) − ‖κ̃
(n)‖2(qn)).

Proof. We define Ci,j = π−1
∫ π
−π |1− ψne

iλ|−4 cos iλ cos jλdλ. It holds that

(1− ψ2
n)2Ci,j = ψ|i−j|n |i− j|+ ψ|i+j|n |i+ j|+ 1 + ψ2

n

1− ψ2
n

(ψ|i−j|n + ψ|i+j|n ).

We introduce m-dimensional matrices Cm, Jhm, and Kh
m with entries given by Ci,j , (Jhm)i,j =

1{|i−j|=h}, and (Kh
m)i,j = 1{i+j=h} + 1{2m+2−i−j=h}. We further define C̄m = (1 − ψ2

n)2Cm,

C̃m =
∑∞

h=0 Jhmψhn(h+ (1 + ψ2
n)(1− ψ2

n)−1), and Čm =
∑∞

h=0 Kh
mψ

h
n(h+ (1 + ψ2

n)(1− ψ2
n)−1). From
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Lemma A1, it follows that

(Om(C̃m − Čm)O)i,j = δi,j

∞∑
h=−∞

ψ|h|n (|h|+ (1 + ψ2
n)(1− ψ2

n)−1) cos
hjπ

m+ 1
.

By direct calculations, we obtain C̃m ≥ Čm for m sufficiently large. On the other hand, it holds that

for all m-dimensional vector β,

βᵀC̃mβ = (1− ψ2
n)2

∞∑
j=−∞

∣∣∣ ∞∑
k=0

(k + 1)ψknβj+k

∣∣∣2, (A.135)

βᵀC̄mβ = (1− ψ2
n)2

∞∑
j=−∞

∣∣∣ ∞∑
k=0

(k + 1)ψknβ|j+k|(1 + δj+k,0)
∣∣∣2. (A.136)

Here we take βj = 0 for all j < 0. Because (A.135) and (A.136) hold for arbitrary m, and comparing

C̃m−Čm with C̄m, we prove the lemma by using the fact that f(λ;σ(n)(qn)2, γ(n)(qn),∆n) ∼ ((ι(n))2+

n−1)|1− ψneiλ|2 with probability approaching one.

Appendix B Proof of Main Results

B.1 Proof of Theorem 1

Proof. The assumptions of Theorem 1 lead to the fact that L̄?n(CT , γ
(n))− L̄?n(σ(n)(q)2, γ(n)(q)) = 0

for all q ≥ q?. Then, in view of the proof of Lemma B4 in the online appendix of Da and Xiu (2021),

we have

L̄?n(CT , γ
(n))− L̄?n(σ(n)(q̂n)2, γ(n)(q̂n)) ≤ log n

2
(q? − q̂n) +O(q̂n + log n). (B.1)

As an immediate result, we obtain that for n sufficiently large, q̂n ≤ q?. On the other hand, we have

(log n)−1
(
L̄?n(CT , γ

(n))− L̄?n(σ(n)(q)2, γ(n)(q))
)
→∞ for all q ≤ q? − 1, according to the assumption

that
√
n(log n)−1|θ(n)

q? | → ∞. Then (B.1) indicates that for n sufficiently large, q̂n ≥ q? and we

conclude the proof.

B.2 Proofs of Theorem 2, Corollary 1, and Proposition 1

Lemma B1. Suppose the same assumptions as those in Theorem 2 hold. Then it holds that

R̂n(q?) = oP(1) and R(n)(q?) = oP(1).

Proof. We start by proving the convergence of R̂n(q?n). From Lemma A9 it directly follows that

L̄?n(CT , γ
(n))− L̄?n(σ̂2

n(q̂n), γ̂n(q̂n)) = oP(n). (B.2)

Since both (σ2
n, γn) and (CT , γ

(n)) belong to Π
(σ2,γ)
n , according to Theorem 4.1.1, Proposition 4.5.3,

Proposition 3.2.1, and Theorem 3.1.2 in Brockwell and Davis (1991), there exist unique (χ2
n, φn) and
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((χ(n))2, φ(n)) such that for all −π ≤ λ ≤ π,

f(λ; σ̂2
n(q̂n), γ̂n(q̂n),∆n) = χ2

ng(λ;φn) and f(λ;CT , γ
(n),∆n) = (χ(n))2g(λ;φ(n)), (B.3)

1 + inf
z∈C,|z|≤1

∞∑
j=1

φn,jz
j > 0 and 1 + inf

z∈C,|z|≤1

∞∑
j=1

φ
(n)
j zj > 0. (B.4)

In view of (B.3) and the definition of L̄?n, the bound (B.2) can be rewritten in terms of (χ2
n, φn) and

((χ(n))2, φ(n)), which leads to

log
χ2
n

(χ(n))2
= oP(1) and

1

2π

∫ π

−π

f(λ;CT , γ
(n),∆n)

f(λ;σ2
n, γn,∆n)

dλ− 1 = oP(1). (B.5)

Here we use (A.107) and the fact that (2π)−1
∫ π
−π g(λ;φ(n))/g(λ;φn)dλ ≥ 1, indicated by (B.4). With

χ(n) calculated using Assumption 4, the first part of (B.5) indicates that logχ2
n = log(ι(n))2 + oP(1).

Substituting the estimate of χ2
n back into (A.22), plus using the second part of (B.5), plus (A.107),

immediately allows us to prove the convergence of R̂n(q?n). On the other hand, the convergence of

R(n)(q?) = oP(1) follows directly from Lemma A5. We conclude the proof.

Proofs of Theorem 2 and Corollary 1. Step 1. (Technical preparation) In this proof the dependence

of β(n) on q is suppressed and here we take q = q?. We set βn(σ2, γ) = (σ2, γ). We start by

introducing (q? + 2)× (q? + 2) matrices ∂Ξn(βn, β
′
n, k) with k ∈ {1, 2} and βn, β

′
n ∈ Πβ

n(q?), defined,

for 0 ≤ i, j ≤ q? + 1, by

∂Ξn(βn, β
′
n; 1)i,j =

1

2n
tr

(
∂ log Ωn(βn)

∂βi

∂ log Ωn(β′n)

∂βj

)
, (B.6)

∂Ξn(βn, β
′
n; 2)i,j =

1

4n
tr

(
∂ log Ωn(βn)

∂βi

∂ log Ωn(β′n)

∂βj
(Ωn(βn)−1 + Ωn(β′n)−1)YnY

ᵀ
n

)
. (B.7)

We further denote ∂Ξn(βn; j) := ∂Ξn(βn, βn; j). In addition, we use ∂Ξn(β̄
(n)
, q?; j) and

∂Ξ̄?n(β̄
(n)
, q?), respectively, to denote the (q? + 2) × (q? + 2) matrices with entries defined by (B.6)

and (B.7) and with entries defined by (A.2). On the other hand, we let {β̌n ∈ Πβ
n(q?) : n ≥ 1} be a

sequence of (q? + 2)-dimensional random vectors that satisfies the equation Ξn(β̌n) = 0q?+2, and the

condition whereby supλ |f(λ; β̌n,∆n)f(λ; β̄
(n)
,∆n)−1 − 1| = oP(1) holds. In view of the definition

of ∂Ξn(βn, β
′
n; j) introduced in (B.6) and (B.7), plus applying the rules of matrix differentiation, in

particular that Ωn(β) and Ωn(β′) commute for all (β, β′), we observe that

β̌n − β(n) = (2∂Ξn(β̌n, β
(n); 2)− ∂Ξn(β̌n, β

(n); 1))−1(ΞA,n(β̌n)− ΞA,n(β(n))). (B.8)

On the other hand, using Djm = OmFjmOm and the connection between matrix Vm and spectral

density f(λ;β,∆n) and the positivity of both following the reasoning of step 1 of the proof of

Lemma A2, plus the fact that ∂f(λ;β,∆n)/∂β does not depend on β, we have, for all αn → 0 and
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j ∈ {1, 2}, and under that supλ |f(λ; bn,∆n)f(λ; β̄
(n)
,∆n)−1 − 1| → 0 for bn ∈ {β̌n, β(n)},{

(1− αn)∂Ξn(β̄
(n)
, q?; j) ≤ ∂Ξn(β̌n, β

(n); j) ≤ (1 + αn)∂Ξn(β̄
(n)
, q?; j)

(1− αn)∂Ξ̄?n(β̄
(n)
, q?) ≤ ∂Ξn(β̄

(n)
, q?; 1) ≤ (1 + αn)∂Ξ̄?n(β̄

(n)
, q?)

. (B.9)

Furthermore, using Lemma A2, we can derive E
∣∣1Ω′n

(
tr(Ωn(β̄

(n)
)−1YnY

ᵀ
n − In)

)2∣∣ ≤ Kn, which,

combined with (A.22) and (A.107), leads to the fact that for some αn → 0,

lim
n→∞

P((1− αn)∂Ξn(β̄
(n)
, q?; 1) ≤ ∂Ξn(β̄

(n)
, q?; 2) ≤ (1 + αn)∂Ξn(β̄

(n)
, q?; 1)) = 1. (B.10)

Step 2. (Main proof) We define Y C
n (j) = (Y C

n (j)1, . . . , Y
C
n (j)nd)

ᵀ and introduce, for all 1 ≤ i ≤
q? + 2 and j ≥ 1,

Vn(j)i = − 1

2n

∂

∂βi
tr(Ωnd(β

(n))−1UC(j)UC(j)ᵀ), V̄n(j)i = − 1

2n

∂

∂βi
tr(Ωnd(β

(n))−1ΩU,C
n (j)).

(B.11)

Using Lemmas A3 and A4, we obtain that ΞD,n(β(n))1 = oP(n−1/2), and that for all 2 ≤ i ≤ q? + 2,

ΞD,n(β(n))i − Ξ̄n(β(n))i −
Jd∑
j=1

(Vn(j)i − V̄n(j)i) = oP(n−1/2) and Ξ̄n(β(n))i = oP(n−1/2).

Here we use the well-known result (see Section 2.1.5 of Jacod and Protter (2011)) that under As-

sumption A1 and for two finite stopping times S ≤ S′ and some p ≥ 0, and for a process A that is

one of µ, σ, ξ, ξ−1, and η,

E( sup
S≤s≤S′

(‖As −AS‖p)|FS) ≤ E((S′ − S)1∧(p/2)|FS). (B.12)

We let Fε(j) = σ(εC(k)i : i ≤ nd, k ≤ j − 1) be the σ-field generated by the sequence of all εC(k)

with k ≤ j − 1, and Fχ(j) = σ(χi : i ≤ (j − 1)nd) be the σ-field generated by the sequence of all χi

with i ≤ (j − 1)nd, and denote F(j) = F∞ ⊗Fε(j)⊗
∨
k≥0Fχ(k). From direct calculations we have

that for all 2 ≤ i ≤ q? + 2,

n1/2
Jd∑
j=1

E(Vn(j)i − V̄n(j)i|F(j)) = oP(1), n2
Jd∑
j=1

E((Vn(j)i − V̄n(j)i)
4|F(j)) = oP(1). (B.13)

And for all 2 ≤ i, i′ ≤ q? + 2, it holds that

n3/2n−1
T

Jd∑
j=1

E((Vn(j)i − V̄n(j)i)(Vn(j)i′ − V̄n(j)i′)|F(j))
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=
(1

2
W (γ?) +

cum4(ε)

4
W (γ?)γ?γ?ᵀW (γ?)

) T
∫ T

0 η4
sξ
−1
s ds( ∫ T

0 η2
sξ
−1
s ds

)2 + oP(1). (B.14)

Here we use Lemmas A3 and A4, Assumption A1, and the fact that εC(j) is independent of F(j′)

for all j′ ≤ j. Because of the definition of stable convergence and the fact that F∞ ⊂ F(j), in view

of (B.13) and (B.14), we readily obtain

n3/2n−1
T (0q?+1 : Iq?+1)ΞD,n(β(n))

L−F∞−→ U , (B.15)

where the stable convergence in law is with respect to F∞. Here U is a (q? + 1)-dimensional random

vector defined on an extension (Ω̄, F̄ , (F̄t)t≥0, P̄) of (Ω(0),F∞, (Ft)t≥0,P(0)) and which, conditionally

on F∞, is centered Gaussian and satisfies

Ē(UUᵀ|F∞) =
(1

2
W (γ?) +

cum4(ε)

4
W (γ?)γ?γ?ᵀW (γ?)

) T
∫ T

0 η4
sξ
−1
s ds( ∫ T

0 η2
sξ
−1
s ds

)2 .
On the other hand, straightforward algebra leads to

n−1nT∂Ξn(β̄
(n)
, q?)−1

1,1 = 2σ3ζ∆−1/2
n +O(1),

n−1nT∂Ξn(β̄
(n)
, q?)−1

1,k+1 = −2σ2

ζ2

q+1∑
r=1

(2− δr,1)W (γ)−1
r,k +O(∆1/2

n ),

n−1nT∂Ξn(β̄
(n)
, q?)−1

j+1,k+1 = 2W (γ)−1
j,k +O(∆1/2

n ).

Hence, (B.9) and (B.10) jointly indicate that for all 2 ≤ j ≤ q? + 2,

β̌n,j − β
(n)
j = −(0j−1, 1, 0q?+2−j)

ᵀ∂Ξn(β̄
(n)
, q?)−1ΞD,n(β(n)) + oP(n−1/2). (B.16)

Here we also use Lemmas A7 and A8, (A.109), and the relation (B.8). At this stage, in view of the

fact that by definition (σ̂2
n(qn), γ̂n(qn)) maximizes Ln(σ2, γ) over Π

(σ,γ2)
n (qn) and the definition of β̌n,

plus Lemma B1, the combination of (B.15) and (B.16) proves the theorem. Applying continuous

mapping theorem, we obtain the corollary.

Proof of Proposition 1. In view of Assumption A1 and (B.12), a Riemann sum argument leads to

1

4nT

nT−kn∑
i=1+kn

(∆n
i U)2

kn∑
j=−kn

(∆n
i+jU)2 =

( ∫ T
0 η4

sξ
−1
s ds

)( ∫ T
0 ξ−1

s ds
)( ∫ T

0 η2
sξ
−1
s ds

)2 ((
2kn + cum4(ε)

)
(γ?0 − γ?1)2

+
1

π

∫ π

−π
f(λ; γ?)2(1− cosλ)2dλ

)
+ oP(1),

1

4nT

nT−2kn∑
i=1

(∆n
i U)2

2kn∑
j=kn+1

(∆n
i+jU)2 =

( ∫ T
0 η4

sξ
−1
s ds

)( ∫ T
0 ξ−1

s ds
)( ∫ T

0 η2
sξ
−1
s ds

)2 kn(γ?0 − γ?1)2 + oP(1).
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On the other hand, from Theorem 3.3.1 of Jacod and Protter (2011) it follows that
∑nT

i=1(∆n
i X)4 =

OP(1). Given the consistency of γ̂n and Assumption 4, applying Cauchy-Schwarz and Jensen’s

inequalities proves the proposition.

B.3 Proof of Theorem 3

Proof. In view of the proof of Lemma B4 in the online supplemental appendix of Da and Xiu (2021),

we have that under either n1/2ι(n) →∞ or n1/2ι(n) ≤ K, and for all an →∞ and all fixed 0 < k < K,

L̄?n
(
σ(n)(q?n(k))2, γ(n)(q?n(k))

)
− L̄?n

(
σ(n)(q̂n)2, γ(n)(q̂n)2

)
=

log n

2

(
q?n(k)− q̂n

)
+ oP

(
q?n(k) + an

)
+OP

(
|q?n(k)− q̂n|

)
. (B.17)

The definition of q?n(k), combined with Lemma A10 and (B.17), indicates that there exists a fixed

k such that q?n(k) − q̂n ≤ 1 with probability approaching one. Further, in view of Lemma A10 and

using the bound on nψ4
n

∑∞
j=q?n(k) |κnj |2, we obtain that nψ4

n

∑∞
j=q̂n+1 |κnj |2 = OP

(
(q̂n + 1) log n

)
and

that q̂n ≤ OP(q?n(k) + 1). Hence, it follows from Lemmas A5 and A6 that for all 0 ≤ j ≤ q̂n,

∣∣γ̂(n)(q̂n)j − γ(n)
j

∣∣2 = OP

(
n−1(ι(n))4(q̂n + 1) log n+ n−3(n1/2ι(n) + 1)(q̂n + 1)3 log n

)
.

Here we also use the proof of Lemma B3 of Da and Xiu (2021). The bound on ‖γ̂(n)(q̂n) − γ(n)‖
directly follows. Continuous mapping theorem leads to the bound on ‖ρ̂(n)(q̂n)− ρ(n)‖.

B.4 Proof of Theorem 4

Proof. We observe that for all (σ2, γ) ∈ Π
(σ2,γ)
n (q),

In =
∂ log Σn(σ2, γ)

∂σ2
σ2 +

q∑
j=0

∂ log Σn(σ2, γ)

∂γj
γj .

Thus, the theorem directly follows from the fact that for all finte q,

tr

(
∂ log Σn(σ̂2(q), γ̂(q))

∂(σ2, γ)j

)
= −tr

(
∂Σ−1

n (σ̂2(q), γ̂(q))

∂(σ2, γ)j
YnY

ᵀ
n

)
, 1 ≤ j ≤ q + 2,

which are the first-order conditions.

B.5 Proof of Theorem 5

Proof. Step 1. (Technical preparation) We define (q + 2) × (q + 2) matrix W̄n(σ2, γ) and nT × nT
matrices R(k), with 1 ≤ k ≤ q + 2, as

W̄n(σ2, γ) =
1

2π

∫ π

−π

(
∂ log f(λ;σ2, γ,∆n)

∂(σ2, γ)

)ᵀ
∂ log f(λ;σ2, γ,∆n)

∂(σ2, γ)
dλ,
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R(k) = δk,1
∂Σn(σ2, γ)−1

∂σ2
+ 1{k≥2}

∂Σn(σ2, γ)−1

∂γk−2
.

Throughout the proof we omit the argument of W̄n(σ2, γ) and W̃n(σ2, γ). We can calculate, using

Lemmas A1, A3, and A4,

(W̄−1
n )1,1 = 4σ3ζ∆−1/2

n +O(1), (W̄−1
n )1,k+1 = −σ

2

ζ2

q+1∑
r=1

(2− δr,1)W (γ)−1
r,k +O(∆1/2

n ), (B.18)

(W̄−1
n )j+1,k+1 = W (γ)−1

j,k +O(∆1/2
n ), (nT W̃

−1
n )j,k − (W̄−1

n )j,k = O(∆n + δj,1δk,1). (B.19)

On the other hand, also using n1/2+α ≤ i ≤ n− n1/2+α, we have, for r ≥ 0,

R(1)i,i = −(4ζσ3∆1/2
n )−1 +O(1), R(k)i,i = −(2− δk,2)(4σζ3∆1/2

n )−1 +O(1), (B.20)

R(k)i,i+r −R(k)i,i = δk,1
1

4ζ2σ2

(
1− zrn
1− zn

− rzrn
)

+ 1{k≥2}
2− δk,2

4ζ4

(
1− zrn
1− zn

+ rzrn

)
+O(1), (B.21)

where zn is defined in Lemma A3. If we further restrict 0 ≤ r ≤ K, then it holds that

R(1)i,i+r −R(1)i,i =
∆

1/2
n r2

8σζ3
+O(∆n), (B.22)

R(k)i,i+r −R(k)i,i = − 1

4π

r−1∑
s=0

(2− δs,0)(r − s)
∫ π

−π

∂f−1(λ; γ)

∂γk−1
eiλsdλ+O(∆1/2

n ). (B.23)

Step 2 (Main proof) Using (2π)−1
∫ π
−π(∂f−1(λ; γ)/∂γk−1)eiλsdλ = (1 − δs,0/2)W (γ)k,s+1, we

derive from (B.23) and the second part of (B.18) that for 0 ≤ r ≤ K,

q+2∑
k=2

(W̄−1
n )1,k(R(k)i,i+r −R(k)i,i) = −σ

2r2

2ζ2
+O(∆1/2

n ).

Combined with (B.22) and the first part of (B.18), we prove claim (i). Using (B.20) and the second

part of (B.19), we have, for 2 ≤ l ≤ q + 2 and 0 ≤ r ≤ K,

q+2∑
k=2

(W̄−1
n − nT W̃−1

n )l,kR(k)i,i+r = O(∆1/2
n ). (B.24)

In view of Lemmas A1 and A3, it holds by definition that

R(k)i,i+r =
1

2π

∫ π

−π

(
δk,1

∂

∂σ2
+ 1{k≥2}

∂

∂γk−2

)
f−1(λ;σ2, γ,∆n) cos rλdλ+O(∆1/2

n ).

Hence, by observing that cos rλ = ∆−1
n ∂f(λ;σ2, γ,∆n)/∂σ2− 1

2

∑r
k=0(r−k)∂f(λ;σ2, γ,∆n)/∂γk for
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0 ≤ r ≤ q + 1, we have, for 2 ≤ l ≤ q + 2 and 0 ≤ r ≤ K,

q+2∑
k=2

(W̄−1
n )l,kR(k)i,i+r = 1{l≤r+1}

r + 2− l
2

+O(∆1/2
n ). (B.25)

Combining (B.24) and (B.25) proves claim (ii). Claim (iii) comes directly from the expressions of

(W̄−1
n )j,k provided by (B.18) and (B.19) and the expression of R(k)i,i+r−R(k)i,i provided by (B.22).

For the first part of claim (iii) we additionally use (B.20) to obtain W(σ2, γ; 1)i,i, whereas for its

second part we use claim (ii).
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