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Abstract

Modern financial markets contain many investors. In this context, we study the role of

information in investor decision-making, and the informational efficiency and liquidity of the

market. An equilibrium is characterized in closed-form for a continuous-time economy with many

market participants and imperfect competition, in which investors receive private information

with varying quality, and are heterogeneous in their misperception of the information quality.

In equilibrium, investor heterogeneity in their misperception generates return predictability by

investors’ trading, and trading of different investors follows a simple factor structure with weak

factors. To conduct empirical analysis that builds on these equilibrium implications, we develop

a new big-data econometric method that utilizes the factor structure to accommodate the high-

dimensionality of these implications. Applying the framework to price and institution holding

data of the US stock market, we document that individual institution’s trading with impotent

predictive power can collectively generate significant return predictability that persists for about

a quarter. We estimate dynamic price impact of around 0.25 at quarterly frequency, a moderate

misperception of institutions on their information quality, and institutions’ contributions to the

informational efficiency of the market.
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1 Introduction

Tremendous success has been achieved in testing the semi-strong form of the market efficiency hy-

pothesis Fama (1970) by estimating expectations as functions of public information, e.g., prices, firm

characteristics, and macro variables. Yet, this common practice does not directly allow for testing

the strong version of the market efficiency hypothesis and investigate the important function of fi-

nancial markets of aggregating private information. Despite the enormous theoretical achievements

regarding the role of private information in financial market since seminal Grossman and Stiglitz

(1980) and Kyle (1985), empirically investigating the role of private information is not among the

easiest tasks. Indeed, the model of Kyle (1985) powerfully reveal that, while her private information

allows the informed trader to constantly profit, the price process is still a martingale under public

information set, which means using data on public information alone can not possibly identify the

presence of information asymmetry.

Koijen and Yogo (2019) demonstrates that richer economic implications can be extracted from the

joint moments of prices and quantities under equilibrium frameworks. In the context of Kyle (1985)

model, the trading of the informed (noise) trader would positively (negatively) correlate with future

price movements, suggesting the potential of joint moments of prices and quantities in studying the

role of private information.

Modern financial markets contain many investors. High-dimensionality of a financial market may

have significant implications on both the behaviors of agents within the economy (Martin and Nagel

(2022)) and on how econometricians shall analyze the data generated by the economy (Giglio, Kelly,

and Xiu (2022)).

In this paper, we investigate, in the presence of many investors, the role of information in affect-

ing investor decision-making, and the efficiency and liquidity of the market, as revealed by the joint

moments of prices and investor trading. Building on the symmetric model of Kyle, Obizhaeva, and

Wang (2018), we model a continuous-time economy which consists of many (but not a continuum

of) investors with heterogeneous information and belief structure, trading a risk-free asset and a

risky asset in a centralized market. The risky asset generates a cash flow with unobservable growth

rate. Investors receive private signal flows of heterogeneous precision about the growth rate, poten-

tially misperceive the precision of their own signals to different extents, and infer the future price

movements utilizing both the private signals and the public information embedded in past price and

cash flow. At each moment, investors make optimal consumption-portfolio decisions based on their

inference, taking into account the the impact of their actions on prices. However, investors do not

observe the actions of each other.

To tractably characterize the equilibrium under heterogeneity, we deviate from the standard

equilibrium definition, denoted by “asymptotic equilibrium”, by leveraging the presence of many

investors. Specifically, in an asymptotic equilibrium, given the price function and others’ strategies,

an agent is willing to take a suboptimal strategy, as long as the difference in trading under the
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suboptimal strategy and an exactly optimal one, compared to the magnitude of trading itself, vanishes

as the total number of investors grows. In other words, we only require investors to act optimally

(under their subjective measures) to the leading order. These leading-order optimal strategies are

much simpler than the exactly optimal strategies in the current context, which then allows for a

tractable characterization of an equilibrium. Indeed, one crux of the tractability is that, with many

investors, the total precision of public and private information is almost the same across investors

with different private information quality and misperception, because the total precision mostly

comes from the public part. In this regard, the presence of many investors allows investors in the

economy to take simple trading strategies while still acting almost optimally.

In equilibrium, as in Kyle (1985), investors’ trading rates, rather than positions, are proportional

to their subjective expectations of future price changes, to avoid incurring large trading cost due

to price impact. They also rebalance proportionally to their current position to optimize the risk

exposure. An investor’s expected price change, on the other hand, is proportional to the difference

between her private signal in the recent past and the average of others’ private signals, which is

reflected through price, multiplied by the misperception-adjusted precision of her own signal. The

price dependence of investors’ trading in turn determines the equilibrium market liquidity and price

impact that every investor takes into account.

The equilibrium has empirical implications in three aspects. In the cross section, because the

willingness to trade, i.e., the private signal, is highly idiosyncratic, the trading across investors follows

a weak factor model, with the factor, up to a constant scalar, being minus a weighted sum of the

idiosyncratic shocks to private signals across investors and capturing the minus pricing error. Unlike

standard factor models, the idiosyncratic shocks and the factor negatively correlate, necessary for the

aggregate trading to be zero. The loading of an investor’s trading on the factor depends on both her

trading intensity and the information quality, where the two are not one-to-one mapped because of

her misperception. The more intensively the investor trades, the more she contributes to the pricing

error, whereas the more informative she is, the more she is able to eliminate the pricing error. In

the same direction, the investor’s trading positively (negatively) predict future price changes when

she trades relatively conservatively (aggressively) compared to others given her information quality,

which is in fact captured by whether her misperception is above or below the average level. Finally,

the equilibrium model indicates that the time-series property of an investor’s trading is governed by

the size of the rebalancing effect and the persistence of predictable price changes.

The empirical implications leads to straightforward empirical strategies. The covariance matrix of

trading across investors provide information about the magnitude of investor trading and the distri-

bution of misperception across investors. The regression of future price changes on trading identifies

the magnitude of the pricing error and how quickly the predictable price change decays. Using the

autocorrelations of investor trading, econometricians can estimate the rebalancing magnitude and

compare the trading-implied predictability persistence with the one from the predictive regression.

In the presence of many investors, however, the implications are of high dimension. Directly
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using the sample covariance matrix of trading and running predictive regression with trading of each

institution would incur large estimation errors. Motivated by the factor structure of trading, and

given that the factor is weak, our estimation procedures are centered around conducting dimension

reduction with a modification of standard principal component analysis (PCA) approach. Specifi-

cally, we replace all the diagonal elements of the sample covariance matrix with zeros and conduct

eigendecomposition afterwards. When private information is the only trading motive, the eigende-

composition would generate two (one) eigenvectors1 if there is (is not) misperception heterogeneity,

due to the factor-idiosyncratic shock correlation. There could be a few more eigenvectors when there

are other motives such as public information driving the trading pattern. Regardless, because the

eigenvectors span the pricing error factor, it would be sufficient to run predictive regression with

the linear combinations of all the investors’ trading using those small number of eigenvectors and

achieve dimension reduction for this part as well. We further provide the procedure and conditions

to identify misperception.

We then conduct empirical analysis using the stock-level data and 13F institution holding data

of the US stock market. We find that institutions’ trading collectively significantly predict excess

returns, and the predictability persists for around a quarter. We estimate the dynamic price impact

coefficient to be around 0.25 at quarterly frequency, meaning that selling 1% of the total outstanding

shares of a stock over a quarter would push its price downward by .25% during the quarter. Across

different types of institutions, investment advisors mostly have misperception below average, whereas

banks and mutual funds mostly have above-average misperception. In addition, we find that, for all

most institutions, especially investment advisors, a large part of their quarterly position change can

be attributed to intra-quarter trading of relatively high frequency which does not target the more

persistent predictable returns that we document. Finally, we find that, according to the equilibrium

model, the pricing error, caused by the unobservable growth rate and reflected by the persistent

predictable returns, has a standard deviation lower bounded by about 0.89%. Across different types

of investors, investment advisors, household sectors, and mutual funds are most important for price

informativeness. In the absence of trading by all the investment advisors and of trading by all the

mutual funds, the standard deviation of the pricing error would increase by at least about 37% and

18%, respectively.

The theory part of our paper extends the symmetric model of Kyle, Obizhaeva, and Wang (2018)

to allow for flexible heterogeneity in information quality and investor misperception in a dynamic

economy, and contribute to the broad literature of asset pricing models with information asymmetry:

Kyle (1989), Wang (1993), Wang (1994), He and Wang (1995), Vayanos (1999), Vives (2011), and Du

and Zhu (2017). The empirically relevant many-investor setup indicates that investors take simple

equilibrium strategies. It also indicates that, although in equilibrium there could be sizable pricing

errors, each investor can at best profit out of a tiny portion of it. These results highlights the impact

of high-dimensionality on agent behaviors and in this regard the paper is also related to Martin and

1Precisely, eigenvectors with nonzero eigenvalues.
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Nagel (2022).

The econometric procedures in the paper build on and contribute to the evolving literature on the

applications of statistical and machine learning in asset pricing, in particular on the topic of factor

models and PCA approaches, e.g., Kelly and Pruitt (2013), Kozak, Nagel, and Santosh (2018), Kelly,

Pruitt, and Su (2019), Kozak, Nagel, and Santosh (2020), Giglio and Xiu (2021), and Giglio, Xiu, and

Zhang (2021). Complementary to this literature, the factors in our paper are weak yet pervasive and

we propose a modification of the standard PCA accordingly. On the other hand, the way we conduct

predictive regression shares the same spirit of Da, Nagel, and Xiu (2022), which demonstrates that

weak predictors, if efficiently combined, can collectively generate significant predictive power. In our

paper, however, the relative predictive power of each institution’s trading is revealed by the trading

correlations across institutions, which directly guides how we combine the predictors.

Moreover, our paper relates to the enormous literature on mutual funds, e.g., Berk and Green

(2004), Fama and French (2010), Pástor and Stambaugh (2012), Kacperczyk, Van Nieuwerburgh,

and Veldkamp (2014, 2016), and Song (2020).2 Utilizing PCA-based procedures, we document

significant return predictability by efficiently combining trading of different institutions, despite that

the aggregate institution trading barely predicts future returns. In addition, we demonstrate that

how much predictive power econometricians can extract from investors’ positions hinges on the

dispersion of their misperception and that investors’ portfolio returns and their contributions to

market efficiency are not one-to-one mapped. For instance, in the fully symmetric case, even though

investors are injecting their private information into the price, their trading has zero correlation with

price movements and the alphas of their portfolios are all zero. We further provide estimates of the

contributions to price informativeness by each type of institutions.

Finally, our paper is also connected to the literature that empirically estimates price elasticities

of demand in financial market under various scenarios that are orders of magnitude smaller than

what the standard models would imply,3 including Harris and Gurel (1986), Shleifer (1986), Chang,

Hong, and Liskovich (2015), Koijen and Yogo (2019), and Gabaix and Koijen (2021). Our structural

model-based estimate of dynamic demand elasticity of around 4 at quarterly frequency is similar to

the existing estimates in magnitude, suggesting that investors’ low signal-to-noise ratio may provide

a potential explanation to the small magnitude of estimated elasticities.

Our paper proceeds as follows. Sections 2 – 4 characterize the equilibrium model with many

investors. Specifically, Section 2 sets up the economy, Section 3 characterizes the equilibrium under

symmetry , and Section 4 generalizes the characterization to the scenario with heterogeneous infor-

mation quality and misperception. Section 5 presents the empirical implications of the equilibrium

model and develops econometric procedures to combine the implications with price and quantity

data. Empirical analysis of the US stock market is conducted in Section 6. Section 7 concludes. The

2See also Wermers (2000), Berk and Van Binsbergen (2015), Pástor, Stambaugh, and Taylor (2015), Pástor, Stam-
baugh, and Taylor (2017), and Pástor, Stambaugh, and Taylor (2020).

3See, e.g., Petajisto (2009).
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appendix provides technical details.

2 Setup of the Economy

2.1 Assets

There is a risky financial asset in the economy with zero total supply and its price at time t is denoted

by Pi,t. In addition there exists a zero-return risk-free asset with risk-free rate r. The risky asset

generates cash flow at rate Dt +Do
t . It evolves according to

dDt = −ξDDtdt+Gtdt+ σDdZD
t , and dDo

t = −ξDDo
t dt+Go

tdt+ σDdZD,o
t (2.1)

Here ξD is the mean-reversion parameter, σD is the volatility parameter, and ZD
t and ZD,o

t are

mutually independent standard Brownian motions. The change rates of Dt and D
o
t are also affected

by the dividend growth rates Gt and G
o
t , which both follow mean-reversion processes:

dGt = −ξGGtdt+ σGdZG
t and dGo

t = −ξoGo
tdt+ σodZo

t , (2.2)

where ZG
t and Zo

t are two other mutually independent standard Brownian motions, which do not

depend on ZD
t and ZD,o

t as well.

2.2 Preference

We index the many investors participating the economy by j ∈ J . Investor j trades both risk-free

and risky assets and we use xfj,t to stand for the value of her time-t holding of risk-free asset, and

denote by xj,t her time-t holding of the risky asset. Their time derivatives are denoted by by ẋfj,t

and ẋj,t. The objective of investor j is

max
{ẋj,s,cj,s}s≥t

Ej,t

∫ ∞

t
e−ρ(s−t)u(cj,s)ds, with u(cj,s) = −e−γcj,s , (2.3)

where the change of the risk-free asset value satisfies

ẋfj,t = rxfj,t − cj,t + xj,t
(
Dt +Do

t

)
− ẋj,tPt (2.4)

We use Ej,t(·) to represent expectation under investor j’ subjective measure, conditional on her

time-t information set, which we will further discuss shortly. The trading rate ẋfj,t and ẋj,t must also

be measurable to the time-t information set. Market-clearing price Pt can depend on the investor’s

current and past trading, and the investor takes her price impact into account when making decisions.

2.3 Information and Belief

For the risky asset, we assume investors directly observe its price and cash flow components Dt and

Do
t . The cash-flow growth rate component Go

t is also observable to each investor. However, investors

misperceive how Go
t drives cash-flow growth. Concretely, under investor j’s subjective measure, the
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cash-flow rate follows

dDo
t = −ξDDo

t dt+
(
Gt + (1 + ηj)G

o
t

)
dt+ σDdẐD,o

j,t , (2.5)

where investor j considers ẐD,o
j,t := ZD,o

t − (σD)−1ηj
∫ t
Go

sds a standard Brownian motion. On the

other hand, investors do not observe the growth rate component Gt. Investor j instead receives a

noisy signal flow Sj,t about Gt, which satisfies

dSj,t = Gtdt+ σSj dZ
S
j,t. (2.6)

Here ZS
j,t is a standard Brownian motion independent of (ZD

t , Z
G
t , and is also independent across

assets. The volatility parameter σSj controls the signal-to-noise ratio of Sj,t. The investor, however,

perceive the drift of her signal as ωjGt in constructing her subjective expectation Ej,t(·):

dSj,t = ωjGtdt+ σSj dẐ
S
j,t.

where ẐS
j,t := ZS

j,t + (σSj )
−1(1 − ωj)

∫ t
Gsds is considered by investor j as a standard Brownian

motion. In other words, she has an incorrect understanding of the informativeness of her signals.

This matches the econometric fact that it is hard to measure drift precisely without long time span,

whereas volatility is perfectly measurable in continuous time. We assume that investors correctly

perceive the dynamics of both asset fundamentals and others’ private signals. Investors do not

observe each other’s private signals or trading actions. Therefore, investor j’s subjective expectation

Ej,t(·) is only measurable to Fj,t, the information set generated by {Sj,s, Ps, Ds, D
o
s , G

o
s}s≤t, i.e., her

private signals, the price, the cash flow, and the observable growth rate component, up to time t.

3 Equilibrium with Symmetric Information Structure

In this section, we conduct equilibrium analysis under the symmetric information structure.

3.1 Setup

For results in this section, we impose the following assumption:

Assumption 1. The cash flow component Do
t and the observable growth rate Go

t are both zero.

Moreover, signal noise parameter σSj and the misperception parameter ωj stay invariant across all

investor j ∈ J :

σSj = σS , and ωj = ω, ∀j ∈ J . (3.1)

Under Assumption 1, our setup matches that of Kyle, Obizhaeva, and Wang (2018), where

an equilibrium with linear flow-strategies is elegantly characterized. We conduct an asymptotic

exercise to understand the properties of the equilibrium of Kyle, Obizhaeva, and Wang (2018) as

the total number of investors gets large. This matches our empirical goal as, for instance, in stock

markets typical stocks are being traded by a large number of investors. Moreover, in this case we
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are able to obtain provide closed-form expressions of all the endogenous parameters, whereas in

general numerical tools to required to solve key endogenous parameters. Specifically, we consider the

following drifting sequence of exogenous parameters:

Assumption 2. As J , i.e., the size of J , increases,

(
σS
)2

= Jι,

whereas ι and all the other exogenous parameters (ξD, ξG, σD, σG, ω, ρ, γ) stay unchanged.

The assumption is to prevent total precision of all investors’ signals from exploding, which would

lead to that asset price converges to the exact fundamental value and that price impact vanishes. It

is notable that we keep γ constant. Arguably, absolute risk aversion changes with level of wealth.

That the market consists of a lot of investors is connected with that each investor is relatively small

and potentially has large absolute risk aversion. Fortunately, under the current setup, equilibria with

different values of γ are isomorphic, and characterizing an equilibrium with any value of γ would be

sufficient.4

Given the information structure, investors form their expected returns, which could depend on

both their private signals and price history. On the other hand, however, price is endogenous and is

affected by how investors trade based on the subjective expected returns. The equilibrium concept

is formally defined as:

Definition 1: An equilibrium is a set of investor trading strategies {ẋfj,t(·), ẋj,t(·)}j∈J and price

function Pt

(
{ẋj,s(·), Ds, Sj,s, Ps′}s≤t,s′<t,j∈J

)
such that

(i) For each investor j ∈ J , given the price functions and the strategies of all the other investors,

the trading strategy
(
ẋfj,t(·), ẋj,t(·)

)
solves the optimization problem specified by (2.3) and (2.4),

subject to that ẋfj,t(·) and ẋj,t(·) are measurable to the information set Fj,t;

(ii) The risky asset market clears: ∑
j∈J

xj,t = 0.

Notably, in Definition 1 trading strategies can depend on contemporaneous prices. In other words,

investors can trade in the form of submitting demand schedules, which allows the market to clear in

the absence of market makers.

3.2 Equilibrium

We conjecture that in equilibrium all investors submit symmetric linear demand schedules as follows:

ẋj,t = ψDGD
t + ψCDt + ψSGj,t − ψPPt − ψHxj,t, (3.2)

4If we double the risk aversion, then all the price variables would not change and all the quantity variable would be
halved. See Theorem 4 of Kyle, Obizhaeva, and Wang (2018).
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where processes GD
t and Gj,t are constructed as follows:

GD
t = (ξP − ξG)

∫ t

−∞
e−ξP (t−s)(dDs − ξGDsds), (3.3)

Gj,t = (ξP − ξG)

∫ t

−∞
e−ξP (t−s)dSj,s, (3.4)

with the parameter ξP defined by

ξP =
√

(ξG)2 + (σG)2
(
(σD)−2 + ι−1

)
. (3.5)

In other words, GD
t and Gj,t are constructed using cash flow and private signals up to t, which both

contain information about the growth rate Gt. The reason behind the specific way of construction

will be explained shortly.

Market clearing forces both aggregate position and aggregate trading to be zero, which leads to

ẋj,t + ψHxj,t = −
∑

j∈J :j′ ̸=j

(ẋj′,t + ψHxj′,t). (3.6)

Then, suppose all investors j′ ∈ J with j′ ̸= j submit demand schedule (3.2), the supply curve faced

by investor j, which is a function of investor trading, would be

Pt

(
ẋj,t
)
=
(
ψP
)−1
(
ψDGD

t + ψCDt + ψS 1

J − 1

∑
j∈J :j′ ̸=j

Gj′,t +
1

J − 1

(
ẋj,t + ψHxj,t

))
. (3.7)

Investor j’s problem is to solve her optimization problem specified by (2.3) and (2.4) under (3.7).

The equilibrium would be established if her optimal strategy also satisfy the conjecture (3.2).

The next proposition presents the implications of large J on the equilibrium characterized by

Kyle, Obizhaeva, and Wang (2018):

Proposition 1. Suppose Assumptions 1 and 2 hold. Then there exists an equilibrium as in Definition

1 if J is sufficiently large, ξG > r, and ω > 2.5 The equilibrium has the following properties:

(i) In equilibrium the price satisfies

Pt =
Dt

ξD + r
+

E(Gt|{Ds, S̄s}s≤t)

(ξD + r)(ξG + r)
+OP(J

−1), with S̄s =
1

J

∑
j∈J

Sj,s, (3.8)

where E(·) is the expectation under the objective measure. Moreover, it holds that

E(Gt|{Ds, S̄s}s≤t) =
(σD)−2GD

t + ι−1Ḡt

(σD)−2 + ι−1
, with Ḡt :=

1

J

∑
j∈J

Gj,t, (3.9)

5This shows that the existence condition conjectured by Kyle, Obizhaeva, and Wang (2018), at least when the
market is large, is correct.
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(ii) The optimal trading strategy follows (3.2), with
(
(J − 1)ψP

)−1
= ζ + OP(J

−1) and ψH =

b+OP(J
−1), and the trading satisfies

ẋj,t = a
ξP + r

(ξD + r)(ξG + r)

ω(σS)−2

(σD)−2 + ι−1
(Gj,t − Ḡt)− bxj,t +OP(J

−3/2). (3.10)

Here the endogenous parameters a, b, and ζ are given by

a =
1

ζω(ξP + r)
, b =

1

2
(ω − 2)(ξP + r), ζ =

1

2

rγ(σP )2(
b+ 1

4r
)2 − 1

16r
2
, (3.11)

where σP = (ξD + r)−1
√(

σD
)2

+
(
σG
)2
(ξG + r)−2.

As revealed by property (i), when the market becomes large, the gap between the equilibrium

price and what best reflects the present value of future cash flows converges to zero. In general, as

demonstrated by Kyle, Obizhaeva, and Wang (2018), the equilibrium price is

Pt =
Dt

ξD + r
+

ϕ

(ξD + r)(ξG + r)

1

J

∑
j∈J

Ẽj,t

(
Gt

)
,

where ϕ is a endogenous parameter conjectured to be smaller than one, and Ẽj,t(·) is the investor

j’s expectation if she hypothetically observes everyone’s private signal up to t. Therefore, the

gap comes from two sources: the “price-dampening” parameter ϕ and that Ẽj,t

(
Gt

)
differs from

E(Gt|{Ds, S̄s}s≤t). The latter one naturally shrinks, because the difference between the two expec-

tations only comes from investor j’s misperception of her own signal, which plays a vanishing role

in forming the expectations as J increases. The price dampening effect originates from that investor

j understand (correctly) that other investors misperceive the precision of their signals in forming

their growth rate estimates Ẽj,t

(
Gt

)
. If ϕ = 1, the average expected return across investors would

be negative (positive) when Gt is positive (negative). So would the aggregate demand. As a result,

ϕ < 1 is needed to clear the market. Hence, when the market is large, ϕ is pushed towards one as

Ẽj,t

(
Gt

)
converges to E(Gt|{Ds, S̄s}s≤t).

Equation (3.9) is a direct result of standard Kalman-Bucy filtering. Gj,t is constructed using

investor j’s own signal, whereas GD
t is intended to capture the information about the growth rate

contained in the cash flow. The expectation of Gt is a weighted average of them, with the weights

determined by their relative informativeness. The parameter ξP determines the relative weights on

signals from recent and distant past. Indeed, when the information on Gt contained in the cash flow

or the signal is of high quality, ξP increases and Gj,t and GD
t is mostly composed of very recent

signals.

The equilibrium trading is quite interpretable as well. The gap between average growth rate

estimate Ḡt to the true growth rate Gt mean-reverts to zero at rate ξP .6 With Gt unobservable,

6Precisely speaking, when investor j makes her trading decisions, what matters should be the average growth rate
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investor j measure the gap using Gj,t − Ḡt and shrink it by the factor ω(σS)−2
/(

(σD)−2 + ι−1
)
,

as she is aware of the noise of her own signal. The factor
(
ξD + r

)−1(
ξG + r

)−1
reflects how

price is connected to the average growth rate estimate. Finally, the investor chooses parameters

a and b to balance capturing expected returns and alleviating trading costs, with the price impact(
(J−1)ψP

)−1
= ζ+OP(J

−1) being endogenously determined. The equilibrium trading resembles the

one obtained by Gârleanu and Pedersen (2013, 2016) in partial equilibrium models with exogenous

trading cost function, where investors directly derive utility from after-cost investment performance

rather than from consumption.

4 Equilibrium with Heterogeneous Information Structure

This section is devoted to the equilibrium analysis under general heterogeneous information structure.

4.1 Setup

Motivated by the simplification of the equilibrium under large market demonstrated by Section 3.2,

we restrict our analysis to the large market scenario, in order to generate a tractable characteri-

zation of the equilibrium in the presence of heterogeneity in belief and information structure. To

regulate the asymptotic behaviors of various parameters, we impose the following assumption, which

accommodates Assumption 2 as a special case.

Assumption 3. As J , i.e., the size of J , increases,

(
σSj
)2

= Jιj ,

whereas ιj and exogenous parameters (ξD, ξG, σD, σG, ωj , ρ, γ) stay unchanged. The belief parameters

ηj satisfies

ηj = η̄ + κj , with
∑
j∈J

κj = 0.

where η̄ can either stay constant or vary with J , and satisfies η̄ = O(1). On the other hand, κj

satisfies maxj∈J |κj | = O(J−1/2).

In contrast to Assumption 2, here we explicitly allow for incorrect beliefs on Go
t represented by

ηj . The requirement that belief dispersion must not be larger than ∼ J−1/2 might sound restrictive,

but it actually already allows the belief dispersion to generate almost arbitrarily strong correlations

between investors’ trading.

The main message from Proposition A1 is that, even though investors solve their optimization

problems exactly, as the market becomes large, the equilibrium price and investor trading are dom-

inated by leading-order terms of simple forms. Now we take one step further and only require the

investors to approximately solve their optimization problems, that is, intuitively, as long as a strategy

estimate among all the other investors, but the difference is of second order when the market is large.
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leads to trading that is sufficiently close to trading under an exactly optimal one, they are willing to

take it. To formalize this idea, we update the equilibrium concept as follows:

Definition 2: An asymptotic equilibrium is a set of trading strategies {ẋfj,t(·), ẋj,t(·)}j∈J and

price functions Pt

(
{ẋj,s(·), Ds, D

o
s , G

o
s, Sj,s, Ps′}s≤t,s′<t,j∈J

)
such that

(i) For each investor j ∈ J , given the price function and the strategies of all the other investors,(
ẋfj,t(·), ẋj,t(·)

)
are measurable to the information set Fj,t and satisfy

Ej

(
|ẋj,t − ẋ∗j,t|2

)
≲ J−2 and Ej

(
|xj,t − x∗j,t|2

)
≲ J−2,

for some strategy
(
ẋf∗j,t(·), ẋ∗j,t(·)

)
that solves the optimization problem specified by (2.3) – (2.4),

subject to that ẋf∗j,t(·) and ẋ∗j,t(·) are measurable to Fj,t;

(ii) The risky asset market clears: ∑
j∈J

xj,t = 0.

We note that in Proposition 1 the magnitude of the leading terms for both trading rate ẋ∗j,t and

position x∗j,t are ≂ J−1/2, which turns out to be also true in the asymptotic equilibrium studied

in this section. The small magnitude comes from that investors’ signals are highly noisy, under

Assumptions 2 or 3. These leading terms, however, dominate the deviations from exactly optimal

trading and position allowed by requirement (i) in Definition 2.

4.2 Equilibrium

As in Section 3.2, we conjecture that in equilibrium all investors submit linear demand schedules

ẋj,t = ψD
j G

D
t + ψC

j

(
Dt +Do

t

)
+ ψS

j Gj,t + ψo
jG

o
t − ψP

j Pt − ψHxj,t. (4.1)

All coefficients but ψH are j-dependent. The processes GD
t and Gj,t are also defined by (3.3) and

(3.4), where ξP is now defined by

ξP =
√

(ξG)2 + (σG)2
(
(σD)−2 + ι̃−1

)
, (4.2)

with

ι̃ =
∑
j∈J

π2j (σ
S
j )

2 and πj = ωj(σ
S
j )

−2/
∑
j′∈J

ωj′(σ
S
j′)

−2.

Under symmetric information structure (Assumption 2), weight πj would reduce to equal weight, ι̃

would be equal to ι, and ξP would be the same as the one in (3.5). We will explain why the weight

πj appears later.

Suppose all investors j′ ∈ J with j′ ̸= j submit demand schedule (4.1). Similar to the symmetric

12



case, the market clearing condition would lead to the following supply curve which investor j faces:

Pt

(
ẋj,t
)
=
(
ψ̃
P

j

)−1
(
ψ̃
D

j G
D
t + ψ̃

C

j

(
Dt +Do

t

)
+ ψ̃

o

jG
o
t +

1

J − 1

∑
j∈J :j′ ̸=j

ψS
j′Gj′,t +

1

J − 1

(
ẋj,t +ψHxj,t

))
,

(4.3)

where
(
ψ̃
P

j , ψ̃
D

j , ψ̃
C

j , ψ̃
o

j

)
= (J − 1)−1

∑
j∈J :j′ ̸=j

(
ψP
j′ , ψ

D
j′ , ψ

C
j′ , ψ

o
j′
)
. According to Definition 2, an

asymptotic equilibrium exists if we find a set of parameters
{
ψP
j , ψ

D
j , ψ

C
j , ψ

o
j , ψ

P
j , ψ

H
}
j∈J such that,

for each investor j ∈ J , (4.1) “almost” (as in requirement (i) of Definition 2) solves the optimization

problem (2.3) and (2.4), under the supply curve (4.3). The following theorem presents the result.

Theorem 1. Suppose Assumption 3 holds. Then there exists an asymptotic equilibrium as in Defi-

nition 2 if ξG > r and ω̃ > 2, where ω̃ =
∑

j∈J πjωj. The equilibrium has the following properties:

(i) In equilibrium the price satisfies

Pt =
Dt +Do

t

ξD + r
+

E(Gt|{Ds, S̄s}s≤t)

(ξD + r)(ξG + r)
+

(1 + η̄)Go
t

(ξD + r)(ξo + r)
, with S̄s =

∑
j∈J

πjSj,s, (4.4)

and E(·) is the expectation under the objective measure. Moreover, it holds that

E(Gt|{Ds, S̄s}s≤t) =
(σD)−2GD

t + ι̃−1Ḡt

(σD)−2 + ι̃−1 , with Ḡt =
∑
j∈J

πjGj,t. (4.5)

(ii) Investor j’s trading strategy follows (4.1) with ψP
j = ζ−1πj and ψH

j = b, and the trading

satisfies

ẋj,t = a
ξP + r

(ξD + r)(ξG + r)

ωj(σ
S
j )

−2

(σD)−2 + ι̃−1 (Gj,t − Ḡt) + ao
κj

ξD + r
Go

t − bxj,t. (4.6)

Here the endogenous parameters a, ao, b, and ζ are given by

a =
1

ζω̃(ξP + r)
, ao =

1

2ζ

1

b+ ξo + r
, b =

ω̃ − 2

2
(ξP + r), ζ =

1

2

rγ(σP )2(
b+ 1

4r
)2 − 1

16r
2
, (4.7)

where σP = (ξD + r)−1
√
2(σD)2 + (σG)2

(
ξG + r

)−2
+ (1 + η̄)2(σo)2

(
ξo + r

)−2
is the volatility

of the equilibrium price.

The equilibrium properties resembles those in Proposition 1. The equilibrium price (4.4) takes

the same form of its counterpart (3.8), where S̄j,t is an average of Sj,t weighted by πj . Parameter

ι̃ appearing in (4.5) and (4.2) is the squared volatility of S̄j,t, which reflects its noise level. The

homogeneous misperception parameter ω that affects trading and price impact in (3.11) is replaced

with ω̃ as in (4.7), which is the average of ωj weighted by πj as well. The weight πj reflects

that investors with higher signal precision and larger upward bias in perceiving it would play more

13



important roles in determining equilibrium price and market liquidity. Its specific form originates

from the ωj(σ
S
j )

−2 factor appearing in the trading (4.6). Comparing (4.6) with the equilibrium price

(4.4) and (4.5), we clearly see that the trading can be generated using a linear demand schedule of

form (4.1).

5 Econometric Analysis of the Equilibrium Model

This section studies the identification and estimation of the following parameters: price mean-

reversion coefficient ξP , price impact parameter ζ, misperception parameters
{
ωj

}
j∈J , and informa-

tion quality parameters
{
σSj
}
j∈J . As we can not rule out other types of equilibria, we impose the

following assumption:

Assumption 4. Equilibrium price and investor trading are the ones characterized in Theorem 1.

5.1 Empirical Content of the Equilibrium Model

The equilibrium has two major implications: how trading depends on private and public information

(4.6), and the relation of prices to private information (4.4). They connect the parameters of interest

to moments of holdings and prices. The equilibrium implication on trading can be written more

compactly as

ẋj,t + bxj,t = yj,t := ϕSπj(Gj,t − Ḡt) + ϕoκjG
o
t ,

where the definitions of constants ϕS and ϕo is clear from (4.6). Moreover, we introduce notation

εj,t = ϕS(ξP − ξG)

∫ t

−∞
e−ξP (t−s)σSj dZ

S
j,s, ft = −

∑
j∈J

πjεj,t, and gt = ϕoGo
t .

Then the definition of yt can be further simplified into:

yj,t = πjft + κjgt + πjεj,t.

In other words, trading across investors follows a simple factor structure. Investor trades on ft,

which is the aggregation of the noise in each investor’s private signal entering the price. Because

observe ft is not observable to investors, to load more on the factor ft, an investor will have to load

more on the noise of her own signal as well, which more intensively moves the price against herself.

The factor gt originates from the observable growth rate component Go
t , on which there is a belief

dispersion. The next proposition provides statistical moments regarding the above factor model.

Proposition 2. Suppose Assumptions 3 and 4 hold. Then we have, with some constant ϕ that only

depends on (ϕS , ξP , ξG) and some constant ϕ̄ that only depends on (ϕo, ξo, σo),

E(f2t ) = ϕ̃ι, E(ε2j,t) = ϕ(σSj )
2, E(ftεj,t) = −ϕπj(σSj )2, E(g2t ) = ϕ̄.
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The covariance matrix of rebalancing-adjusted trading rate across investors is

Cov
(
yt
)
= ϕ̃ι ·

(
ββ⊺ − νν⊺ + diag

(
ν
))

+ ϕ̄ · κκ⊺. (5.1)

Here ν = (ν1, ν2, ..., νJ)
⊺ with νj = πjω̃

−1ωj and β = π−ν, whereas yt, π, and κ are all J-dimensional

column vectors whose entries are clear from the context. The average misperception ω̃ is defined in

Theorem 1.

Because weight πj is of order ∼ J−1, and the standard deviation of idiosyncratic shock πjεj,t is

of order ∼ J−1/2, factor f is a weak one. As mentioned earlier, even though Assumption 3 impose a

bound on the size of κj , it is not highly restrictive. Given the magnitude of the idiosyncratic shocks,

Assumption 3 allows gt to be a standard strong factor and the dominant driver of trading correlation

patterns. On the other hand, the factors ft and gt in fact carry all the predictive power of trading

on future price changes. To be concrete, we introduce Πt = Pt +
∫ t
(Ds + Do

s − rPs)ds, the excess

gain process of holding one unit of the risky asset.

Proposition 3. Suppose Assumptions 3 and 4 hold and denote by F̃t the information set generated

by
{
xj,s, fs, gs

}
s≤t,j∈J . Then it holds that, for all τ ≥ 0,

E
(
dΠt+τ

∣∣F̃t

)/
dt = e−ξP τ

(
aω̃
)−1 · ft − e−ξoτ (ao)−1 · η̄gt,

where a is introduced in (4.7).

Notably, even though gt could dominate ft in generating the cross-sectional comovement of trad-

ing, it possesses similar or smaller predictive power compared to ft, depending on the size of average

belief distortion η̄. The reason is that investors do not observe ft, which appears in the conditioning

information set F̃t, and they are unwilling to expeditiously trade on it because of the low quality

of their private signals. Econometricians, on the other hand, can efficiently aggregate their pri-

vate signals implied by their trading and obtain a much more precise estimate of ft, as long as the

misperception parameter ωj differs across investors. Indeed, as a result of Proposition 3, whenever

τ ≥ 0,

E
(
ytdΠt+τ

)
/dt = e−ξP τ

(
aω̃
)−1 · ϕ̃ιβ − e−ξoτ (ao)−1 · ϕ̄η̄κ. (5.2)

If there is no heterogeneity in ωj , then β = 0 and every investor’s trading has zero correlation with

future price movements, making it impossible for econometricians to extract any predictive power.

However, in reality econometricians do not observe yt. They only observe investor positions at

discrete time ∆xt = xt − xt−1. The following proposition connects their statistical moments.

Proposition 4. Suppose Assumptions 3 and 4 hold. Suppose ξP = ξo. Then we have, for all τ ≥ 1,

Σ := Cov(∆xt) = λCov(yt), Rτ := E(∆xt∆Πt+τ ) = λ̄E(yt∆Πt+τ ), (5.3)
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where ∆Πt = Πt −Πt−1, λ̄ = (ξP + b)−1(1− e−ξP ), and λ also only depends on ξP and b. Moreover,

it holds that, for all τ ≥ 1,

ρτ := Corr(xj,t, xj,t+τ ) =
ξP e−bτ − be−ξP τ

ξP − b
. (5.4)

Therefore, given ξP , by looking at the autocorrelation of position change ∆xj,t, the econometrician

can identify b, which allows her to impute the moments involving yt from those based on ∆xt.

Finally, in equilibrium a and ω̃ are connected to b, ξP , ζ, and r as in (4.7).

5.2 Identification and Estimation Procedure

Proposition 5. Suppose Assumptions 3 and 4 hold and ωj is not invariant across j. Also suppose

η̄ = 0 and ξP = ξo. If the econometrician has access to risk-free rate r, the covariance matrix Σ,

the expected return vector Rτ , and the trading autocorrelation ρτ , then using (5.1), (5.2), (5.3), (5.4)

and (4.7), she can identify, for all j ∈ J ,

ξP , πj , ωj , ζ, and ϕ̃ι.

Given πj and ωj , we can only obtain σSj up to a constant common across j. In other words, only

the relative magnitude of information quality is identified, because we do not know parameters such

as ξD and ξG that connect growth rate to price. The quantity ϕ̃ι affects the amount of predictable

return and is a combination of how much the average estimate of growth rate deviate from the true

value and how much the growth rate affects price.

The identification is achieved through the following procedure:

Algorithm 1. Inputs: risk-free rate r, covariance matrix Σ, portfolio price change vector Rτ , and

trading autocorrelation ρτ .

S1. Given Σ, we can utilize (5.1) and (5.3) to obtain

ν̃ := (λϕ̃ι)ν and Σ̃ := λϕ̃ι
(
ββ⊺ − νν⊺

)
+ λϕ̄κκ⊺.

S2. Using ν̃ and Σ̃, we calculate λϕ̃ι using λϕ̃ι = −ν̃⊺Σ̃−1ν̃.7 We then obtain ν from ν̃ and λϕ̃ι.

S3. Further, using λϕ̃ι, Σ̃, and Rτ , we obtain, with any τ ≥ 1,

β =
Rτ√

λϕ̃ιR⊺
τ Σ̃−1Rτ

.

S4. From how Rτ and ρτ change with τ specified by (5.2) and (5.4), we obtain ξP and b, and

thereby λ and λ̄.

7Σ̃ is singular and Σ̃−1 stands for its pseudo inverse.
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S5. From β and ν, we obtain π and ω̃−1ω. From β, λϕ̃ι, λ, λ̄, and Rτ , we obtain ϕ̃ι directly and

obtain aω̃ using (5.2) and (5.3).

S6. Utilizing (4.7), we obtain ω̃ from b, ξP , and r. Then we obtain a from aω̃. Using (4.7) again,

we obtain ζ.

Outputs: ξP , πj, ωj, ζ, and ϕ̃ι.

The above procedure does not rely on that the econometrician observe all the market partici-

pants.8 In the case where we do observe every investor’s trading, we do not need step 2 thanks to

that
∑

j∈J νj = 1 by definition.

The natural implementation of Algorithm 1 is to construct empirical counterparts of the popu-

lation moments. Given the large dimension of Σ and Rτ , using the sample covariance matrix and

sample mean vector directly would incur large estimation erros. Motivated by the factor structure

of trading manifested by (5.1), we propose an estimation method by modifying the standard princi-

pal component analysis (PCA) approach, which we call truncated PCA. Indeed, as discussed after

Proposition 2, the eigenvalue generated by factor ft is at the same order of magnitude as that from

the idiosyncratic component εj,t. To bypass this issue, unlike the standard PCA that conducts eigen-

decomposition directly on covariance or correlation matrices, we replace all the diagonal elements of

the sample version of Σ with zero and conduct eigendecomposition afterwards. The diagonal elements

themselves can be used to estimate ν̃ directly, which is needed in in step 2 of Algorithm 1, because

λϕ̃ιν is the dominating part of the diagonal elements of Σ.9 The eigendecomposition would generate

eigenvectors that span β, ν, and κ. As a result, as demonstrated by (5.2), the expected return vector

is also spanned by those eigenvectors. Therefore, we only need to estimate the projection of Rτ on a

small number of eigenvectors, which is therefore of low dimension. The next Algorithm presents the

details.

Algorithm 2. Inputs: position change ∆xt and gain change ∆Πt.

S1. Construct sample covariance matrix Σ̂ = Ĉov(∆xt). Then estimate ν̃ using

̂̃νj = Σ̂j,j .

S2. Replace diagonal elements of Σ̂ with zero. Conduct eigendecomposition and take d eigenvectors

with large eigenvalues in absolute value. The eigenvectors and eigenvalues can be written as a

8The dimension of matrices and vectors involved in the procedure then apparently have dimensions being the number
of observed investors, and we of course only identify πj and ωj for those observed investors.

9The estimates would be biased if κ is big enough. But in this case gt becomes a strong factor and the danger would
be easily detected.
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J × d matrix Λ̂ and d× d diagonal matrix D̂,10 where Λ satisfies Λ⊺Λ = Id. Estimate Σ̃ as

̂̃
Σ = Λ̂D̂Λ̂⊺.

S3. Estimate Rτ as R̂τ = Λ̂Ê
(
Λ̂⊺∆xt∆Πt+τ

)
.

Outputs: ̂̃ν, ̂̃Σ, R̂τ , Λ̂, and D̂.

6 Empirical Study of the US Stock Market

6.1 Setup

Following Koijen and Yogo (2019), we use stock level data from the Center for Research in Security

Prices (CRSP) and Compustat, and use institutional holdings data based on quarterly filings of

Securities and Exchange Commission Form 13F. The stock level data include prices and four char-

acteristics: book equity, dividends, profitability, and investment. The holdings data covers every

institution with asset under management over $100 million. The total number of these institutions

is around 3,000 and together they own roughly 65% of the total US market. As in Koijen and Yogo

(2019), the institutions are classified into six types: banks, insurance companies, investment advisors,

mutual funds, pension funds, and others.

To connect to the equilibrium model, we construct the quantity of stock i held by investor j at

time t as

xi,j,t :=
Shares of stock i held by investor j at time t

Total shares of stock i at time t
.

The position change is accordingly ∆xi,j,t = xi,j,t − xi,j,t−1.

In a multi-asset scenario, there would be additional effects on trading and price, which can arise

from return correlations between stocks, from heterogeneity in the market capitalizations of different

stocks, or from the learning about one asset from other assets as in Admati (1985). Fully capturing

these effects is beyond the scope of our model that includes only one risky asset. Moreover, as in

standard asset pricing models with learning, our model adopts exponential utility and assumes that

price has a normal distribution rather than a log-normal one. Therefore, it is the absolute price

change rather than the return that is the central price variable in investors’ decision making, which

obviously vary greatly across big and small cap stocks. Moreover, investors have trading motives

beyond information-driven ones, such as time-variations of risk premia, liquidity shocks, matching

benchmarks, and wealth effects.

To operationalize the equilibrium model and aggregate the statistical power over the entire cross-

section of assets, we need to take the following stances: (i) it is the residual price changes and the

residual positions that can not be explained by the observable characteristics that the equilibrium

model is describing; (ii) for each investor, the residual position changes are determined separately and

10We reuse the letter D which appears in the equilibrium model to represent cash flow rate. The context shall
eliminate ambiguity.
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independently for different assets; (iii) for each investor, the misperception parameter ωj , the belief

distortion ηj , and the mean reversion parameters (ξD, ξG, ξo) are invariant across assets, whereas the

volatility parameters (σD, σG, σo, σS) and absolute risk tolerance γ−1 change proportionally with

the market capitalization of the asset. With these assumptions, the trading covariance matrix Σ,

now based on the residual position changes, stays constant across assets, whereas and the covariance

between trading and price change Rτ is is proportional to market capitalization. In other words, the

predicted relative price change (excess return) the next quarter by an investor selling 1% of the total

outstanding shares this quarter will be the same across big and small cap stocks. We thereafter scale

Rτ by the market cap and construct it by replacing the gain change with the dividend-adjusted excess

return over the period (t+τ−1, t+τ), and we hence reuse Πi,t to denote cumulated dividend-adjusted

excess return of stock i and ∆Πi,t = Πi,t −Πi,t−1 throughout the empirical analysis.

Table 1: Institutions Ranked by Total Quarterly Trading Volume 2010Q1 - 2017Q4

Institution
∑

i,t ∆x
2
i,j,t

1 Fidelity Mgmt & Research 8.38
2 Wellington Mgmt Co LLP 4.40
3 Blackrock Inc. 3.37
4 T. Rowe Price Associates Inc. 3.09
5 Invesco 1.83
6 Bank of America Corp. 1.64
7 MSDW & Co. 1.61
8 Royce & Associates LP 1.52
9 J. P. Morgan Chase & Co. 1.39
10 Wells Fargo & Co. 1.25
11 Goldman Sachs & Co. 1.23
12 AXA Financial Inc. 1.18
13 Columbia Threadneedle Invts. 1.14
14 Bank of New York Mellon Crop. 1.10
15 Vanguard Group Inc. 1.06

Total of the top 15: 34.21
All Institutions: 113.45

Note: This table reports the 15 institutions with the largest trading activity in terms of the sum of squared quarterly
position changes across all the stocks over the period 2010Q1 - 2017Q4 and the sum of trading activity of all the
institutions.

We then look at the distribution of trading activities across institutions, represented by the sum

of squared quarterly position change across all the stocks over a period. As shown by Table 1, the

trading activities are highly concentrated. 15 institutions contribute to 30 % of total institution

trading activity. Across institution types, mutual funds and investment advisors are the two biggest

contributors. We hence group smaller institutions in terms of trading of the same type and similar

trading activities such that the group-level trading activities are similar. We have 51 institutions

(groups) in total.
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6.2 Cross-section of Trading

We construct the sample correlation matrix of investors’ trading using their position changes. As

demonstrated by Figure 1, the correlations between different investors’ trading are quite small. One

apparent pattern in the figure that the most active institutions, those in the top-left corners of

investment advisor and the mutual fund blocks, have relatively large negative trading correlations

with all the other investors, which is consistent with the−νν⊺ term appearing in (5.1). This originates

from that more active investors push the price more, and therefore more strongly encourage other

investors to trade in the opposite directions.

Figure 1: Correlation of Trading Across Investors 2010Q1 - 2017Q4
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Note: The figure presents pairwise correlations in position changes ∆xi,j,t between different institutions (groups) over
the period 2010Q1 - 2017Q4. The ones on the diagonal are replaced with zeros. The type between banks and investment
advisors is insurance companies. The one to the right of mutual funds are pension funds and others. Within each
institution type, the top-left corner is the institution with largest trading activity, whereas the bottom-right corner
represents the group of least active institutions.

The documented weak correlations shows that investor trading is dominated by its idiosyncratic

component and validate the motivations behind the truncated PCA approach. Before we applied the

Algorithm 2, we first regress position changes on a set of observable characteristics and investigate

how much variation can be explained. Specifically, for each quarter and institution (group), we

run cross-sectional regression of the position changes over the quarter onto book-to-market ratio,

investment, and profitability at least 6 months prior to the beginning of the quarter, market beta

and market equity the month before the quarter, and excess returns over the last month (lag 0) of

the quarter and the other 8 months (lag 1 to lag 8) prior to it, with both the left-hand-side and

right-hand-side variables standardized. The results are reported in Figure 2. The variables with
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highest explanatory power is returns lagging one to three months, and the total in-sample R2 is on

average only around 0.3%. The residual position change ∆x̆i,j,t, in which all the aforementioned

characteristics have been partialled out for each institution and quarter, will be the building block

for our remaining empirical analysis.

Figure 2: Cross-sectional Regression of Trading on Characteristics by Institution and Quarter
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Note: This figure reports the histograms of coefficients and total R2 of regression of trading on characteristics for each
institution (group) and quarter. All the variables are standardized.

6.3 Truncated PCA

Following steps 1 and 2 of Algorithm 2, we conduct truncated PCA on Ĉov(∆x̆i,j,t), the sample

covariance matrix based on residual positions changes, to obtain the estimate of ν̃, and matrices Λ

and D. The sample average is taken across all assets and time periods from 2010Q1 to 2017Q4.

As shown in Table 2, diagonal elements of Ĉov(∆x̆i,j,t) on average is larger than even the largest

eigenvalue (in absolute value), which justifies the validity of our reduced-form weak factor model and

again highlights the necessity of truncation. It also ensures that the diagonal elements of Ĉov(∆x̆i,j,t)

are chiefly contributed by idiosyncratic shocks and provide a consistent estimate of ν̃, as discussed

above Algorithm 2. That the first eigenvalue is negative reflects that trading is on average negatively

correlated across investors for the market to clear, which echos the −ϕι̃νν⊺ term in (5.1). Indeed, as

reveal by the spanning regression reported in the right half of the table, the first eigenvector strongly

explains the estimate of ν̃. The 91.7% R2 shows that, at least through the lens of vector ν, using

only the first four eigenvectors is a reasonable choice in capturing the cross-sectional correlation of

trading. Still ̂̃ν does load on other eigenvectors, as it is well known that PCA-based methods only

identify loadings of a factor model up to a rotation because these loadings, in our case β, ν, and κ,
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are not necessarily orthogonal to each other.

Table 2: Eigendecomposition of Truncated Sample Covariance Matrix of Position Changes

̂̃ν × 10,000 Eigenvalues × 10,000 Regress ̂̃ν on Eigenvectors

mean std 1st 2nd 3rd 4th 1st 2nd 3rd 4th R2

0.310 0.143 −0.181 0.123 0.072 0.067 0.935 0.186 0.120 0.005 0.917

Note: The table presents the mean and standard deviation of the diagonal elements of sample covariance matrix of
position changes, the four eigenvalues of the truncated version of the sample covariance matrix with largest absolute
values, and the spanning of the diagonal elements with the first four eigenvectors. Eigenvalues are diagonal components
of D, and eigenvectors are columns of Λ̂. Both ̂̃ν and eigenvalues are multiplied by 10,000. For the spanning regression,
we regress ̂̃ν on the first four eigenvectors, excluding the constant term. We normalize ̂̃ν to make it a unit vector, and
eigenvectors by design are also unit vectors.

6.4 Predictive Regression

Next, we study the predictive regression using position changes of institutions. Following step 3

of Algorithm 2, we combine institution trading using the four eigenvectors previously obtain. In

other words, we construct four predictors that would summarize all the predictive power of position

changes under our factor model (5.1) and prediction model (5.2). With each of the four quarterly

trading-based predictors, we run Fama-MacBeth regression of monthly excess returns, over the 1-

month T-bill rate onto the most recent trading-based predictor and lagged characteristics, over the

period from April 2010 to December 2017. The lagged characteristics are log market equity, book-

to-market equity, profitability, investment, market beta, and momentum, which are chosen to be the

most recent ones that are public at month t to predict excess returns at month t + 1. With all the

four predictors together, we run Fama-MachBeth regression with the same controls again. Running

predictive regression separately allows us to connect the regression coefficients directly to Rτ , β, and

then structural parameters, as demonstrated in Algorithms 1 and 2. In contrast, the coefficients of

the joint regression are also affected by the correlations between the trading-based predictors, which

are generally nonzero and comes from both the factor and idiosyncratic parts of position changes.

The top panel of Table 3 shows that, even though the point estimates of predictive power are

only moderate, they are statistically significant thanks to that the predictors are mostly trading

on the idiosyncratic components of returns, leading to small standard error. Other than the first

predictor, which represents roughly the total position changes of all the institutions in the sample, all

the other predictors significantly predict future excess returns. Effectively, with the time unit being

a quarter, the 4-dimensional vector consisting of the coefficients in the bottom-right panel of Table 3

is exactly 10, 000× Ê
(
Λ̂⊺∆x̆i,t∆Πi,t+1

)
,11 indicating that vector R̂τ mostly loads on the second and

fourth eigenvectors.

11As in Section 5, the j-dimension is vectorized, i.e. ∆x̆i,t is a vector consisting of ∆x̆i,j,t. 10,000 instead of 100
appears because excess returns are measured in percentage.
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Table 3: Return Prediction with Eigenvector-weighted Institution Position Changes

with Each Predictor with All Predictors

1st 2nd 3rd 4th 1st 2nd 3rd 4th

mean −.015 −.072 −.062 .092 −.026 −.113 −.054 .098

s.e. .029 0.28 .030 .030 .038 .035 .030 .033

Std of Predictors × 100 without Standardization × 100

1st 2nd 3rd 4th 1st 2nd 3rd 4th

mean .62 .078 .58 .70 −.012 −.056 −.035 .066

s.e. .07 .08 .03 .05 .018 .022 .017 .021

Note: The top panel of the table presents time-series means and standard errors of cross-sectional regression coefficients
of monthly excess returns onto the most recent trading-based predictor and lagged characteristics, over the period from
April 2010 to December 2017, with all the predictors and characteristics standardized each quarter. The top-left panel
is the regression with each of the trading-based predictor and all the control variables. The top-right panel is the one
with all the the trading-based predictors and controls. The bottom-left panel reports the size of the predictors, and
the bottom-right panel redo the regression of the top-left panel without standardization. The monthly excess returns
are measured in percentage.

We conclude this subsection by studying how quickly the return predictability decays, which in the

equilibrium model is governed by the parameter ξP as in (5.2). In the context of predicting monthly

return, we have Rm
(l+1)/3 = exp(−ξP l/3)Rm

1/3, where Rm
τ = E

(
∆x̆i,t

(
Πi,t+τ − Πi,t+τ−1/3

))
. Then

we modify the previous Fama-MacBeth regression to predict, with quarter-t institution trading, the

excess return over each of the six months after the end of quarter-t. The four predictors constructed

above are now combined to boost statistical power, using the coefficients in the bottom-right panel of

Table 3 as weights. The results are presented in the left panel of Table 4. The right panel of the table

reports the GMM estimation of the parameter ξP using the cross-sectional regression coefficients as

inputs, based on five moment conditions: E
(
Rm,c

(l+1)/3 − exp(−ξP l/3)Rm,c
1/3

)
= 0 for l = 1, 2, 3, 4, 5,

where Rm,c is an scalar that combines components of Rm in the aforementioned way.

6.5 Time Series of Trading

This subsection is devoted to the empirical analysis of the time-series properties of institution trading.

As demonstrated by (5.4), the time-series structure provides identification of parameters b and ξP .

We start by looking at the autocorrelation of long-run position change. Specifically, we choose

the“ long-run” as two years and investigate Corr
(∑t+7

s=t ∆x̆i,j,s,
∑t+15

τ=t+8∆x̆i,j,τ
)
for each institution

(group), reported in Figure 3.

From (5.4), the slow mean reversion evident from the figure could come from either very small

b or very small ξP . Because the parameter ξP , which is estimated through the decay rate of return

predictability in Table 4, which is very large under 2-year time unit. Since it is b that is quite small,

we expect that the short-run autocorrelation of quarterly position change shall be mostly determined
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Table 4: Decay Rate of Predictable Returns with Institution Position Changes

Predicted Return over Different Future Months ξP

1st month 2nd 3rd 4th 5th 6th

mean .154 .176 .066 .071 .044 −.083 .870

s.e. .071 0.59 .060 .061 .060 .064 .737

Note: The left panel of the table reports the time-series means and standard errors of cross-sectional regression
coefficients of future monthly excess returns over different future months onto the current trading-based predictor and
the most recent lagged characteristics, over the period from April 2010 to December 2017, with the predictor and
characteristics standardized each quarter. The right panel reports GMM estimation of structural parameter ξP using
cross-sectional regression coefficients as input, based on five moment conditions.

Figure 3: Histogram of Sample Autocorrelation of Two-year Position Changes
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Notes: The figure presents the histogram of sample autocorrelation, estimated using pooled estimation across all the
stocks, of two-year position changes across institutions.

by ξP . We now estimate ξP using the autocorrelation of trading to provide comparison with the one

from Table 4. It follows from (5.4) that when l ≥ 1 and b× l is small we approximately have12

γj,l +
1

2
b = e−ξP (l−1)

(
γj,1 +

1

2
b
)
, with γj,l = Corr(∆x̆i,j,t,∆x̆i,j,t+l).

In other words, the short-run correlation of ∆x̆i,j,t, after removing the effect of long-run rebalancing

by adding b/2, mimics that of a AR(1) process. To estimate ξP and b using trading autocorrelations,

we first estimate sample autocorrelation γ̂j,l for l = 1, 2, ..., 6, and for each institution (group) j.

Then we conduct GMM estimation of ξP and b imposing ten moment conditions: E
(
γ̂j,l + b/2 −

e−ξP (l−1)(γ̂j,1 + b/2)
)
= 0 and E

((
γ̂j,l + b/2− e−ξP (l−1)(γ̂j,1 + b/2)

)
γ̂j,1
)
= 0 for l = 2, ..., 6.13

The estimate of ξP matches the estimate based on decay of return predictability and the estimate

12The approximation is that the long-run rebalancing effect − b
2
e−bl is approximately b

2
when bl is small.

13We are implicitly assuming the estimation error for γ̂j,1 is negligible.
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Table 5: Autocorrelation of Quarterly Position Changes

Autocorrelations at Different Lags Parameters

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 ξP b

mean .056 -.004 -.026 -.030 -.030 −.029 estimate 1.29 .057

std. .099 .039 .037 .023 .021 .020 s.e. .074 .004

Note: The left panel of the table reports the mean and standard deviation of sample autocorrelations across institutions
(groups). The right panel presents GMM estimates and standard errors of parameters ξP and b.

of b is consistent with Figure 3, reflecting that the relative magnitude of autocorrelations of different

lags supports the implication of the equilibrium model. The left panel of the table, however, shows

that the absolute magnitude of, say the autocorrelation of lag one, is small compared to that of

an AR(1) model with mean reversion rate around one. Moreover, there is significant dispersion of

the autocorrelation across institutions, evident from the magnitude of the standard deviation. This

suggests that institutions, unsurprisingly, conduct “higher frequency” intra-quarter trading that is

not targeted at the predictable returns documented by Tables 3 and 4, which are of “lower frequency”.

6.6 Structural Implications

The presence of intra-quarter trading would affect the covariance matrix Σ := Cov(∆x̆i,t)
14, breaks

the first equation in (5.3), and contaminate the identification of parameters describing the trading

that actually corresponds to the more persistent return predictability. To alleviate this issue, we

instead estimate the parameters using the covariances between position changes over adjacent periods

Σ′ := Cov(∆x̆i,t,∆x̆i,t+1) +
b
2Cov(∆x̆i,t),

15 which satisfies Σ′ = λ′Cov(yt) for some constant λ′ that

only depends on ξP ,16 and on which the intra-quarter trading has less influence. Algorithm 1 applies

as before, with λ replaced by λ′. Rτ has been estimated in Section 6.4, following step 3 of Algorithm

2. We now provide the procedure to estimate ν̃ ′ := (λ′ϕ̃ι)ν and Σ̃′ := λ′ϕ̃ι
(
ββ⊺ − νν⊺

)
+ λ′ϕ̄κκ⊺.

Algorithm 3. Inputs: position change ∆x̆i,t, autocorrelation γ̂j,1, outputs of Algorithm 2 (̂̃ν, Λ̂, D̂),

and rebalancing parameter estimate b̂.

S1. Estimate ν̃ ′ using ̂̃ν ′j = ̂̃νj(γ̂j,1 + b̂/2
)
.

S2. Estimate Σ̃′ as
̂̃
Σ′ = Λ̂D̂′Λ̂⊺, where d× d matrix D̂′ is

D̂′ = Ĉov
(
Λ̂∆x̆i,t, Λ̂∆x̆i,t+1

)
− Λ̂diag

( ̂̃ν ′)Λ̂⊺ +
1

2
b̂D̂.

14See footnote 8.
15The second term is to remove the effect of rebalancing, which would depend on the magnitude of intra-quarter

trading.
16λ′ = (ξP )−2(1− e−ξP )2.
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Outputs: ̂̃ν ′ and ̂̃Σ′.

As in Algorithm 2, step 2 again conducts dimension reduction using
̂̃
Σ′, which is valid under

the assumption that the eigenvectors of Σ̃ spans all the eigenvectors of Σ̃′. As a partial test of this

assumption, we regress ̂̃ν ′ on the four eigenvectors (the columns of Λ̂) without constant and obtain

an R2 of 85%. Following steps 2 and 3 of Algorithm 1, (where ν̃ and Σ̃ are naturally replaced by ν̃ ′

and Σ̃′, which in turn are estimated using Algorithm 3), we obtain estimates of β and ν across all

the institutions (groups), presented in Figure 4.

A few patterns emerge. All banks and most mutual funds trade against future price movement,

which means they have more upward bias in perceiving their information quality within our model,

whereas most investment advisors more correctly understand the precision of their private signals.

If interpreted more broadly, it perhaps could be that a large part of bank trading is based on other

motives such as hedging and liquidity considerations. On average, institutions have about zero

investment performance in the current context. The average of β is −0.0026, meaning that market

participants outside the data, which include households and smaller institutions, on average do not

have a big advantage or disadvantage. Moreover, the dispersion of β is smaller than (about half of)

the average magnitude of ν, suggesting that the deviation of misperception from average level is not

too big.17 On the other hand, the average misperception, however, must be greater than two for the

equilibrium characterized here to exist. Further, because we construct institution groups such that

they have similar trading activity, the distribution of ν suggests that mutual funds focus more on

trading on price movements that are more persistent, whereas investment advisors devote a larger

portion of their investment activities to intra-quarter trading, possibly due to that they on average

have smaller sizes. Finally, the sum of νj across all the institutions in the data is 89.8%18, indicating

that institutions in the sample together may conduct trading on persistent price movement more

than their coverage of the total market in terms of asset under management.

Table 6 collects the estimates of the other structural parameters estimated following steps 5 and 6

of Algorithm 1. The quantity ϕ̃ι reflects the magnitude of trading activity, and the number suggests

that, ignoring rebalancing consideration, the total willingness to trade over a quarter for all the

market participant, of which the motive is to capture the predictable return component that persists

for about a quarter, is about 2.39% of the total outstanding shares for an average stock, which is then

absorbed by appropriate price change to clear the market. The average misperception ω̃ is about 2.09,

just exceeding the threshold 2 for our equilibrium to exist. The main driver between this number is

that the rebalancing rate b is very small, compared to how quickly predictable return mean-reverts

(the parameter ξP ). Suppose price impact is less important compared to risk aversion, then, within

our model, investors could rebalance more quickly, avoiding a large portion of risk exposure but

capturing expected return almost equally well. In other words, small b reflects that price impact is

of more importance in investors’ tradeoff, indicating that ω̃ is not much higher than the threshold

17As in Proposition 2, βj/νj = 1− ω̃−1ωj .
18The sum of νj across all the market participants is one by definition.

26



Figure 4: Distribution of β and ν across Institutions
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Note: The figure presents the estimated β and ν across institutions. The type between banks and investment advisors
is insurance companies. The one to the right of mutual funds are pension funds and others. Within each institution
type, the leftmost one is the institution with largest trading activity, whereas the rightmost one represents the group
of least active institutions. For five institutions with negative estimates of ν, we replace the estimates with zeros.

2, at which the market liquidity completely goes away. The estimate of the price impact coefficient

ζ suggests that selling a stock at the rate of 1% of the total shares per quarter would impose about

0.26% downward pressure on price during the selling. The estimate of a indicates that, facing a

subjective predictable return of 1% that decays at rate ξP , an investor at the moment would buy

the stock at rate 1.45% of the total shares per quarter.

In the predictive regression exercises, we as econometricians are essentially constructing a proxy

for the predictive factor ft that appears in Proposition 3 using investors position changes. The

proxy would necessarily contain errors if a significant part of institutions’ quarterly position changes

originate for intra-quarter trading that is not directly connected to the persistent component of the

predictable return. Even in the absence of intra-quarter trading, the precision of the proxy positively

depends on the dispersion of investors’ misperception. In the completely symmetric case, the posi-

tions or position changes does not correlate with ft at all for all the investors. With the estimates of

ϕ̃ι, ω̃, and a, a back-of-the-envelop calculation using Proposition 3 indicates that perfect knowledge of

ft would be generate a predictable return of which the standard deviation of 4×(aω̃)−1
√
ϕ̃ι = 3.16%
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Table 6: Estimates of Structural Parameters√
ϕ̃ι× 100 ω̃ ξP ζ a b

2.39 2.09 1.29 .256 1.45 .057

Note: The table collects estimates of the six structural parameters. ξP and b are obtained from Table 5, whereas the
other four are calculated based on steps 5 and 6 of Algorithm 1.

per quarter for an individual stock. If we further suppose ft is purely uncorrelated across stocks and

stock idiosyncratic volatility is about 30%, then with an investment universe of 1,600 stocks, an

investor with perfect knowledge of ft could generate s Sharpe ratio of around 4.1, suggesting that

our private information interpretation is perhaps relevant.

From property (i) of Theorem 1 and under η̄ = 0, the pricing error arising from that Gt is

unobservable satisfies

Var
(
Pt − Ft

)
= 2ϕ̃ιζ2 ×

(
1− ξG/ξP

)−1(
1 + ι̃(σD)−2

)
> 2ϕ̃ιζ2.

Here Ft is the present value of future cash flows when Gt is observable.19 Then from Table 6,

the estimate of
√
2ϕ̃ιζ, the lower bound of the standard deviation of the pricing error, is around

0.86%. Because of the design of our empirical analysis articulated in Section 6.1, the number shall

be interpreted as the error relative to the price itself. When ξG/ξP and ι̃(σD)−2 are small, i.e.,

the growth rate does not mean-revert much over the course of a quarter and that the information

contained in cash flow about the growth rate is little compared to that from the aggregation of private

signals,
√
2ϕ̃ιζ provides a good approximation to the magnitude of the pricing error. In this case,

the counterfactual standard deviation of the pricing error in the absence of investors j with j ∈ J0

would be the current standard deviation multiplied by factor
√∑

j:j /∈J0
νj
/∑

j:j /∈J0
πj .

20 We report

in Table 7 the counterfactual pricing error magnitude relative to the current one in the absence of

trading by each type of institutions and by the household sector.21

The type of institutions that is most important for improving the informational efficiency of the

market is the type of investment advisors, followed by mutual funds. Households sector contribute

to the price informativeness significantly as well. On the other hand, institutions that demand

liquidity for other reasons such as risk hedging or balance sheet management such as banks, insurance

companies, and pension funds, contribute negatively to the market efficiency.

19The expression of Ft is simply the one of Pt with E(Gt|{Ds, S̄s}s≤t) replaced by Gt.
20In general, the factor

√∑
j:j /∈J0

νj
/∑

j:j /∈J0
πj is a lower (upper) bound of the ratio of the counterfactual pricing

error magnitude to the current one when the factor is greater (less) than one.
21The household sector here includes all the households and non-13F institutions.
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Table 7: Counterfactual Pricing Error Magnitude In the Absence of Certain Investors

Banks Insurance
Companies

Investment
Advisors

Mutual
Funds

Pension
Funds

Other
Institutions

Households

.95 .98 1.37 1.18 .99 1.00 1.24

Note: The table presents the counterfactual pricing error magnitude relative to the current one in the absence of trading
by each type of institutions and by the household sector, using the estimates of β and ν presented in Figure 4.

7 Conclusion

Taking stock, our paper provides a new conceptual framework and appropriate econometric proce-

dures to understanding the role of private information in the financial market utilizing price and

quantity data together. The presence of many investors allows for a tractable equilibrium with het-

erogeneity in information and belief structure, and at the same time requires for properly designed

econometric methods. Examining the equilibrium implications with the joint moments of price and

institution holding data allows us to measure, among others, the magnitude of market inefficiency and

the contributions of various investors to the price informativeness. More broadly, it would be inter-

esting to investigate that to what extent the current empirical strategies, that are directly generated

by our equilibrium model, can actually apply beyond under the current structural assumptions.
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Appendix A Mathematical Proofs

A.1 Dynamic Trading with Price Impact

This section solves the investor j’s optimization problem (2.3) and (2.4) under an exogenous supply

curve, which provides foundation for the proofs of Proposition 1 and Theorem 1.
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A.1.1 Setup

We consider the following form of supply curve faced by investor j:

Pt(ẋj,t) = P̃j,t + ζj ẋj,t + ζ̄jxj,t, (A.1)

Here P̃j,t is the “intercept” of the supply curve that investor j faces and does not depend on her

trading. Trading ẋj,t not only affects contemporaneous price, with coefficient ζj , but also has per-

sistent impact onto future prices, the intensity of which is measured by coefficient ζ̄j . The intercept

P̃j,t, on the other hand, is assumed to satisfy

dP̃j,t +Dtdt− rP̃j,tdt = µj,tdt+ σPj dẐ
P
j,t, (A.2)

where, under investor j’s subjective measure, µj,t is the drift and Ẑ
P
j,t is a standard Brownian motion.

Next, we specify the subjective dynamics of µj,t to have a two-component structure:

µj,t = µ
(1)
j,t + µ

(2)
j,t , (A.3)

and, for each k ∈ {1, 2}, µ(k)j,t follows a simple mean-reverting process:

dµ
(k)
j,t = −ξµ,(k)j µ

(k)
j,t dt+ σ

µ,(k)
j dẐ

µ,(k)
j,t , (A.4)

where Ẑ
µ,(1)
j,t and Ẑ

µ,(2)
j,t are two standard Brownian motions, under investor j’s subjective measure.

The correlations between Ẑ
µ,(1)
j,t , Ẑ

µ,(2)
j,t , and ẐP

j,t are such that

Ej,t

(
dµ

(k)
j,t dµ

(k′)
j,t

)
=
(
Σµ
j

)
k,k′

dt, and Ej,t

(
dµ

(k)
j,t dP̃j,t

)
=
(
Σ
(µ,P )
j

)
k
dt. (A.5)

The problem is equally tractable when µj,t consists of any finite number of components mean-

reverting at various rates. But allowing for two components is already sufficient for our equilibrium

analysis.

A.1.2 Solution

This subsection solves the investor optimization problem (2.3) and (2.4) under the supply curve

specified by (A.1), (A.3), (A.4), and (A.5). We present the solution in the following proposition:

Proposition A1. Suppose the supply curve satisfies (A.1), (A.3), (A.4), and (A.5). If equations

(A.24), (A.25), and (A.26) in Section A.1.3 has a solution satisfying (A.28), then the optimal trading

strategy that solves the problem (2.3) and (2.4) is

ẋj,t = −bjxj,t +
∑

k∈{1,2}

a
(k)
j µ

(k)
j,t , (A.6)
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where the trading intensity parameters (a
(1)
j , a

(2)
j ) and the rebalance parameter bj are given by (A.29).

A.1.3 Proof of Proposition A1

Proof. Under the supply curve specified by (A.1), (A.3), (A.4), and (A.5), the value function

of the optimization problem will only depend on (xfj,t, xj,t, µ
(1)
j,t , µ

(2)
j,t , P̃j,t), and we denote it by

V (xfj,t, xj,t, µ
(1)
j,t , µ

(2)
j,t , P̃j,t). We denote ΣP

j = (σPj )
2. Using (2.3) and (2.4), we can write the HJB

equation as:

ρV = max
ẋt,ct

(
− exp(−γct) +

∂V

∂xft
(rxft + xtDt − ct − Ptẋt) +

∂V

∂xt
ẋt

−
∑

k∈{1,2}

ξµ,(k)
∂V

∂µ
(k)
t

µ
(k)
t +

∂V

∂P̃t

(µt −Dt + rP̃t)

+
1

2

∑
k,k′∈{1,2}

∂2V

∂µ
(k)
t ∂µ

(k′)
t

Σµ
k,k′ +

∑
k∈{1,2}

∂2V

∂P̃t∂µ
(k)
t

Σ
(µ,P )
k +

1

2

∂2V

∂P̃ 2
t

ΣP

)
. (A.7)

Here and below in the proof, for simplicity of exposition, we suppress the argument of V and the

subscript j. We conjecture the value function as

V = − exp

(
a0 + a1(x

f
t + P̃txt) +

∑
k,k′∈{1,2}

(a2)k,k′µ
(k)
t µ

(k′)
t +

∑
k∈{1,2}

(a3)kµ
(k)
t xt + a4x

2
t

)
,

where a2 is a (2× 2)-dimensional symmetric matrix, a3 is a 2-dimensional vector, and a0, a1, and a4

are scalars. Under the conjecture, we can calculate

V −1 ∂V

∂xft
= a1, V −1 ∂V

∂xt
= a1P̃t +

∑
k∈{1,2}

(a3)kµ
(k)
t + 2a4xt, (A.8)

V −1 ∂V

∂µ
(k)
t

=
∑

k′∈{1,2}

(a2)k,k′µ
(k′)
t (1 + δk,k′) + (a3)kxt, V −1 ∂V

∂P̃t

= a1xt, (A.9)

V −1 ∂2V

∂µ
(k)
t ∂µ

(k′)
t

= (a2)k,k′(1 + δk,k′) + V −2 ∂V

∂µ
(k)
t

∂V

∂µ
(k′)
t

, (A.10)

V −1 ∂2V

∂P̃t∂µ
(k)
t

= a1xt
∂V

∂µ
(k)
t

, V −1∂
2V

∂P̃ 2
t

= a21x
2
t . (A.11)

The first-order condition w.r.t. ct is

γ exp(−γct) =
∂V

∂xft
= a1V. (A.12)
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Using (A.1), the first-order condition w.r.t. ẋt is

∂V

∂xft
(−P̃t − ζ̄xt − 2ζẋt) = −∂V

∂xt
.

Substituting the derivatives given in (A.8) into the two first-order conditions, we obtain

a1(−P̃t − ζ̄xt − 2ζẋt) + a1P̃t +
∑

k∈{1,2}

(a3)kµ
(k)
t + 2a4xt = 0. (A.13)

(A.13) further leads to

ẋt =
1

2ζa1
(−a1ζ̄ + 2a4)xt +

1

2ζa1

∑
k∈{1,2}

(a3)kµ
(k)
t , (A.14)

a1ζẋtV =
∂V

∂xft
(−Pt) +

∂V

∂xt
. (A.15)

Substituting (A.12) and (A.15) into (A.7), we obtain

ρV = −γ−1a1V +
∂V

∂xft
(rxft + xtDt + γ−1 log(γ−1a1V )) + a1ζẋ

2
tV

−
∑

k∈{1,2}

ξµ,(k)
∂V

∂µ
(k)
t

µ
(k)
t +

∂V

∂P̃t

(µt −Dt + rP̃t)

+
1

2

∑
k,k′∈{1,2}

∂2V

∂µ
(k)
t ∂µ

(k′)
t

Σµ
k,k′ +

∑
k∈{1,2}

∂2V

∂P̃t∂µ
(k)
t

Σ
(µ,P )
k +

1

2

∂2V

∂P̃ 2
t

ΣP . (A.16)

Substituting ∂V

∂P̃t

and ∂2V

∂P̃ 2
t

given by (A.9) and (A.11) into (A.16), we have

ρV = V (1) + V (2) + a1ζẋ
2
tV, (A.17)

where

V (1) = a1V

(
−γ−1 + r(xft + xtP̃t) + γ−1 log(γ−1a1V ) + xtµt +

1

2
a1x

2
tΣ

P

)
,

V (2) = −
∑

k∈{1,2}

ξµ,(k)
∂V

∂µ
(k)
t

µ
(k)
t +

1

2

∑
k,k′∈{1,2}

∂2V

∂µ
(k)
t ∂µ

(k′)
t

Σµ
k,k′ +

∑
k∈{1,2}

∂2V

∂P̃t∂µ
(k)
t

Σ
(µ,P )
k .

Since V (2) does not contain xft , setting the coefficient of xft as zero leads to a1 = −γr, under which
V (1) satisfies

V −1V (1) = r − r log(r)− ra0 − r

(
1

2
γa1Σ

P + a4

)
x2t
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−r
∑

k,k′∈{1,2}

µ
(k)
t µ

(k′)
t (a2)k,k′ − r

∑
k∈{1,2}

xtµ
(k)
t (γ + (a3)k). (A.18)

On the other hand, using ∂2V

∂µ
(k)
t ∂µ

(k′)
t

and ∂2V

∂P̃t∂µ
(k)
t

given by (A.10) and (A.11), we can decompose V (2)

into

V (2) = V (3) + V (4) + V (5), (A.19)

where

V (3) = −
∑

k∈{1,2}

ξµ,(k)
∂V

∂µ
(k)
t

µ
(k)
t +

1

2
V

∑
k,k′∈{1,2}

(a2)k,k′(1 + δk,k′)Σ
µ
k,k′ ,

V (4) =
1

2
V −1

∑
k,k′∈{1,2}

∂V

∂µ
(k)
t

∂V

∂µ
(k′)
t

Σµ
k,k′ ,

V (5) = a1xt
∑

k∈{1,2}

∂V

∂µ
(k)
t

Σ
(µ,P )
k .

Using ∂V

∂µ
(k)
t

given by (A.9), we further write V (3), V (4), and V (5) as

V −1V (3) = −
∑

k,k′∈{1,2}

µ
(k)
t µ

(k′)
t ξµ,(k)(a2)k,k′(1 + δk,k′)

−
∑

k∈{1,2}

xtµ
(k)
t ξµ,(k)(a3)k +

1

2

∑
k,k′∈{1,2}

(a2)k,k′(1 + δk,k′)Σ
µ
k,k′ , (A.20)

V −1V (4) =
1

2

∑
k,k′∈{1,2}

µ
(k)
t µ

(k′)
t

∑
l,l′∈{1,2}

Σµ
l,l′(a2)k,l(a2)k′,l′(1 + δk,l)(1 + δk′,l′)

+
∑

k∈{1,2}

xtµ
(k)
t

∑
l,l′∈{1,2}

Σµ
l,l′(a2)k,l(a3)l′(1 + δk,l) +

1

2
x2t

∑
l,l′∈{1,2}

Σµ
l,l′(a3)l(a3)l′ , (A.21)

V −1V (5) = a1
∑

k∈{1,2}

xtµ
(k)
t

∑
l∈{1,2}

Σ
(µ,P )
l (a2)k,l(1 + δk,l) + a1x

2
t

∑
l∈{1,2}

Σ
(µ,P )
l (a3)l. (A.22)

Finally, using (A.14), we can write

a1ζẋ
2
t =

1

4ζa1

∑
k,k′∈{1,2}

µ
(k)
t µ

(k′)
t (a3)k(a3)k′

+
−a1ζ̄ + 2a4

2ζa1
xt

∑
k∈{1,2}

µ
(k)
t (a3)k +

(−a1ζ̄ + 2a4)
2

4ζa1
x2t . (A.23)

Substituting (A.18), (A.19), (A.20), (A.21), (A.22), and (A.23) into (A.17) and setting the coefficients

of µ
(k)
t µ

(k′)
t , µ

(k)
t xt, and x

2
t , and the constant term as zero would provide equations that (a0, a2, a3, a4)
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must satisfy. Setting the coefficient of µ
(k)
t µ

(k′)
t as zero, we have, for k, k′ ∈ {1, 2}

−r(a2)k,k′ + ξµ,(k)(a2)k,k′(1 + δk,k′)−
1

4ζrγ
(a3)k(a3)k′ = A

(µ,µ)
k,k′ , (A.24)

where

A
(µ,µ)
k,k′ = −1

2

∑
l,l′∈{1,2}

Σµ
l,l′(a2)k,l(a2)k′,l′(1 + δk,l)(1 + δk′,l′).

Setting the coefficient of xtµ
(k)
t as zero, we have, for k ∈ {1, 2},

−r(γ + (a3)k)− ξµ,(k)(a3)k −
rγζ̄ + 2a4

2ζrγ
(a3)k = A

(x,µ)
k , (A.25)

where

A
(x,µ)
k = −

∑
l,l′∈{1,2}

Σµ
l,l′(a2)k,l(a3)l′(1 + δk,l) + rγ

∑
l∈{1,2}

Σ
(µ,P )
l (a2)k,l(1 + δk,l).

Setting the coefficient of x2t as zero, we have

1

2
r2γ2ΣP − ra4 −

(rγζ̄ + 2a4)
2

4ζrγ
= A(x,x), (A.26)

where

A(x,x) = −1

2

∑
l,l′∈{1,2}

Σµ
l,l′(a3)l(a3)l′ + rγ

∑
l∈{1,2}

Σ
(µ,P )
l (a3)l.

Setting the constant term as zero, we have

ra0 = −ρ+ r − r log(r) +
1

2

∑
l,l′∈{1,2}

(a2)l,l′(1 + δl,l′)Σ
µ
l,l′ . (A.27)

Therefore, with a1 = −γr, we only need to find (a2, a3, a4) that solve (A.24), (A.25), and (A.26).

Then with a2, (A.27) directly give a0. For the strategy to be stationary, we need

rγζ̄ + 2a4 > 0 (A.28)

according to (A.14), because ζ > 0 and a1 = −γr < 0. Because γ > 0 and ζ > 0, the second-order

conditions hold. The stationarity of the optimal strategy and r > 0 indicates that Ponzi finance is

ruled out. The transversality condition also holds because it follows from the HJB equation (A.16)

and equations (A.24), (A.25), (A.26), (A.27), and a1 = −γr that, for t′ > t,

Ej,t(e
−ρ(t′−t)V (xfj,t′ , xj,t′ , µ

(1)
j,t′ , µ

(2)
j,t′ , P̃j,t′)) = e−r(t′−t)V (xfj,t, xj,t, µ

(1)
j,t , µ

(2)
j,t , P̃j,t).
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Given the solution (a2, a3, a4) to equations (A.24), (A.25), and (A.26) with a1 = −γr, we directly

obtain from (A.14) that

ẋj,t = −bjxj,t +
∑

k∈{1,2}

a
(k)
j µ

(k)
j,t ,

where

a
(k)
j = −(a3)k

2ζrγ
, bj =

1

2ζrγ
(rγζ̄ + 2a4), (A.29)

and the subscripts j of a
(k)
j and bj are added for clarity (we slightly abused the notation – a

(k)
j and

(a2, a3) are different). The proof ends.

A.2 Proof of Proposition 1

Proof. The proof uses “conjecture and verify” approach. Step 1 conjectures investors’ optimal strat-

egy (demand schedule) and derives the supply curve investor j would face, should investor j′ submits

the conjectured demand schedule for all j′ ̸= j. Step 2 analyzes the dynamics of the (intercept) of the

supply curve. In step 3, we study the dynamics of the supply curve under investor j’s information set

and subjective measure, derive her optimal strategy and show it is indeed the conjectured strategy.

The existence condition, the endogenous price impact coefficient, and the equilibrium price are also

derived in the this step. Steps 1 – 3 hence have already characterized the equilibrium. Step 4 proves

the properties stated in the proposition based on steps 1 – 3.

Step 1. We conjecture

ẋj,t = ăµ̃j,t − b̆xj,t, (A.30)

where the process µ̃j,t is given by

µ̃j,t =
ϕ(ξ̆

P
+ r)

ξ̆
D
ξ̆
G

J

J − 1

(
ω−1θĞj,t −

ω

ω + J − 1

(
ξ̆
D
ξ̆
G

ϕ

(
Pt −

Dt

ξ̆
D

)
− θDĞD

t

))
, (A.31)

Ğj,t = (ξ̆
P − ξG)

∫ t

−∞
e−ξ̆

P
(t−s)dSj,s, (A.32)

ĞD
t = (ξ̆

P − ξG)

∫ t

−∞
e−ξ̆

P
(t−s)dSD

s , with dSD
t := dDt + ξDDtdt. (A.33)

The parameters ă and b̆ involved in (A.30) and parameter ϕ appearing in (A.31) will be determined

later on, and the parameters (ξ̆
D
, ξ̆

G
, θ, θD, ξ̆

P
) used in (A.31) – (A.33) are defined as follows:

ξ̆
D
= ξD + r, ξ̆

G
= ξG + r,

θ = (ωσ̃S/σS)2, θD = (σ̃S/σD)2, (A.34)

(σ̃S)2 =
1

(σD)−2 + (ω2 + J − 1)(σS)−2
, ξ̆

P
=

√
(σG/σ̃S)2 + (ξG)2. (A.35)

Suppose, for all j′ ∈ J with j′ ̸= j, investor j′ submit the above demand schedule. Because the
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market clearing condition leads to

ẋj,t = −
∑

j′∈J :j′ ̸=j

ẋj′,t, xj,t = −
∑

j′∈J :j′ ̸=j

xj′,t,

we have

ă
∑

j′∈J :j′ ̸=j

µ̃j′,t =
∑

j′∈J :j′ ̸=j

(ẋj′,t + b̆xj′,t) = −ẋj,t − b̆xj,t. (A.36)

Given (A.36), it follows from the definition of µ̃j,t that

ă
∑

j′∈J :j′ ̸=j

ϕ(ξ̆
P
+ r)

ξ̆
D
ξ̆
G

J

J − 1

(
ω−1θĞj′,t −

ω

ω + J − 1

(
ξ̆
D
ξ̆
G

ϕ

(
Pt −

Dt

ξ̆
D

)
− θDĞD

t

))
= −ẋj,t − b̆xj,t.

(A.37)

(A.37) directly gives Pt as a function of ({Ğj′,t}j′∈J :j′ ̸=j , ẋj,t, xj,t), i.e., the supply curve faced by

investor j:

Pt =
ω + J − 1

Jăω(ξ̆
P
+ r)

(ẋj,t + b̆xj,t) +
Dt

ξ̆
D

+
ϕ

ξ̆
D
ξ̆
G

θDĞD
t +

(ω + J − 1)

ω2

θ

J − 1

∑
j′∈J :j′ ̸=j

Ğj′,t

 .

To facilitate exposition, we introduce

P̃j,t :=
Dt

ξ̆
D

+
ϕ

ξ̆
D
ξ̆
G
Ḡj,t, with Ḡj,t := θDĞD

t +
(ω + J − 1)

ω2

θ

J − 1

∑
j′∈J :j′ ̸=j

Ğj′,t. (A.38)

Then the supply curve can be written as

Pt =
ω + J − 1

Jăω(ξ̆
P
+ r)

(ẋj,t + b̆xj,t) + P̃j,t, (A.39)

in which the intercept P̃j,t would be the focus of the next step.

Step 2. In this step, we focus on understanding the dynamics of P̃j,t. We start with the dynamics

of Ḡj,t, introduced in (A.38). We can write

Ḡj,t = (ξ̆
P − ξG)

∫ t

−∞
e−ξ̆

P
(t−s)

(
θDdSD

t +
ω + J − 1

ω2
θdS̄j,s

)
, with S̄j,t :=

1

J − 1

∑
j′∈J :j′ ̸=j

Sj′,t.

(A.40)

Given the definitions of (θD, θ, SD
t ) (see (A.33) and (A.34)) and the dynamics of (Dt, Sj,t), we have

θDdSD
t +

ω + J − 1

ω2
θdS̄j,t = (σ̃S/σD)2dSD

t + (ω + J − 1)(σ̃S/σS)2dS̄j,t.
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Hence, it holds that

θDdSD
t +

ω + J − 1

ω2
θdS̄j,s = ϕ̄Gtdt+ σ̄G∗dZ̄G

j,t, (A.41)

where Z̄G
j,t is a standard Brownian motion and (ϕ̄, σ̄G∗, Z̄G

j,t) are defined by

ϕ̄ = (σ̃S/σD)2+(ω+J −1)(σ̃S/σS)2 and σ̄G∗dZ̄G
j,t :=

(σ̃S)2

σD
dZD

t +
ω + J − 1√

J − 1

(σ̃S)2

σS
dZ̄S

j,t, (A.42)

and Z̄S
j,t is the standard Brownian motion driving S̄j,t. Combining (A.40) and (A.41), we obtain that

Ḡj,t evolves according to

dḠj,t = −ξ̆P Ḡj,t + (ξ̆
P − ξG)ϕ̄Gtdt+ (ξ̆

P − ξG)σ̄G∗dZ̄G
j,t.

Using that dGt = −ξGGt + σGdZG
t by definition, we can further write

d(Ḡj,t − ϕ̄Gt) = −ξ̆P (Ḡj,t − ϕ̄Gt)dt+ (ξ̆
P − ξG)σ̄G∗dZ̄G

j,t − ϕ̄σGdZG
t . (A.43)

Next, based on the dynamics of Ḡj,t, we derive the evolution of P̃j,t. We introduce short-hand

notation

Ft =
Dt

ξ̆
D

+
ϕϕ̄

ξ̆
D
ξ̆
G
Gt.

Since by definition it holds that

P̃j,t − Ft =
ϕ

ξ̆
D
ξ̆
G
(Ḡj,t − ϕ̄Gt), (A.44)

we use (A.43) to obtain

d(P̃j,t − Ft) = −ξ̆P (P̃j,t − Ft)dt+ ϕ
(ξ̆

P − ξG)σ̄G∗dZ̄G
j,t − ϕ̄σGdZG

t

ξ̆
D
ξ̆
G

. (A.45)

Moreover, from the dynamics of (Dt, Gt), it follows that Ft satifies

dFt = rFtdt−Dtdt+
1− ϕϕ̄

ξ̆
D

Gtdt+ σFdZF
t , with σFdZF

t :=
σDdZD

t

ξ̆
D

+
ϕϕ̄σGdZG

t

ξ̆
D
ξ̆
G

. (A.46)

Combining (A.45) and (A.46), we obtain

dP̃j,t = rP̃j,tdt−Dtdt+
1− ϕϕ̄

ξ̆
D

Gtdt− (ξ̆
P
+ r)(P̃j,t − Ft)dt+ σP∗dZP∗

j,t , (A.47)
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where ZP∗
t is a standard Brownian motion and (σP∗, ZP∗

t ) are defined by

σP∗dZP∗
j,t :=

σDdZD
t

ξ̆
D

+ ϕ
(ξ̆

P − ξG)σ̄G∗dZ̄G
j,t

ξ̆
D
ξ̆
G

. (A.48)

Substituting (A.44) into (A.47), we obtain

dP̃j,t = −Dtdt+
1− ϕϕ̄

ξ̆
D

Gtdt−
ϕ(ξ̆

P
+ r)

ξ̆
D
ξ̆
G

(Ḡj,t − ϕ̄Gt)dt+ σP∗dZP∗
t j, t. (A.49)

Step 3. In this step, we study the dynamics of µj,t := Ej,t(dP̃j,t)/dt + Dt − rP̃j,t and establish

the equilibrium. Because the investor observes P̃j,t and Dt, she effectively observes Ḡj,t according to

(A.38). As a result, it follows from (A.49) that

µj,t := Ej,t(dP̃j,t)/dt+Dt − rP̃j,t = µ
(1)
j,t + µ

(2)
j,t , (A.50)

where

µ
(1)
j,t :=

1− ϕϕ̄

ξ̆
D

Ej,t(Gt), and µ
(2)
j,t = −ϕ(ξ̆

P
+ r)

ξ̆
D
ξ̆
G

(
Ḡj,t − ϕ̄Ej,t(Gt)

)
. (A.51)

We can further write

Ej,t (dEj,t(Gt)) = Ej,t(dGt) = −ξGEj,t(Gt)dt,

Ej,t

(
dḠj,t − ϕ̄dEj,t(Gt)

)
= Ej,t(d(Ḡj,t − ϕ̄Gt)) = −ξ̆PEj,t(Ḡj,t − ϕ̄Gt)dt,

where the first equalities of both lines come from Ej,t (dEj,t(Gt)) = Ej,t(dGt) due to the law of inter-

ated expectations. The second equality of the first line holds by the dynamics of Gt by assumption

and the second equality of the second line is a result of (A.43). Substituting these results into (A.51),

we obtain

Ej,t(dµ
(1)
j,t ) = −ξGµ(1)j,t dt, and Ej,t(dµ

(2)
j,t ) = −ξ̆Pµ(2)j,t dt. (A.52)

Note that the dynamics of P̃j,t given by (A.49), (A.50), and (A.52) exactly matches the premises of

Proposition A1 with ξµ,(1) = ξG and ξµ,(2) = ξ̆
P
. Moreover, from the supply curve (A.39), it follows

that

Pt = P̃j,t + ζ̆ẋj,t + ζ̄xj,t,

where

ζ̆ =
ω + J − 1

Jăω(ξ̆
P
+ r)

, ζ̄ = b̆ζ̆. (A.53)

Then investor j’s optimal trading strategy would be obtained if we can solve (A.24), (A.25), and

(A.26), in which parameters would be functions of (ζ, ζ̄, ϕ), which in turn are functions of (ă, b̆, ϕ).
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Further, the equilibrium can be established if we could find values of (ă, b̆, ϕ) under which the optimal

strategy coincides with (A.30), which also depends on (ă, b̆, ϕ). In general, proving the existence of a

solution to (A.24), (A.25), and (A.26) and finding a closed-form expression of it are both challenging.

But with Assumption 2, we are able to show there exists a solution, and characterize its leading-order

term in closed-form. Suppose (A
(µ,µ)
k,k′ , A

(x,µ)
k , A(x,x)) are constants (the restriction would be removed

later on) and |A(x,x)| is sufficiently small, then (A.24), (A.25), and (A.26) has the following solution:

1

2ζ̆rγ
(2a4 + rγζ̄) =

√
1

2ζ̆
(rγΣP + rζ̄ − 2A(x,x)r−1γ−1) +

r2

4
− r

2
, (A.54)

(a3)k = −
rγ +A

(x,µ)
k

ξµ,(k) +
√

1
2ζ̆
(rγΣP + rζ̄ − 2A(x,x)r−1γ−1) + r2

4 + r
2

, (A.55)

(a2)k,k′ =
1

ξµ,(k)(1 + δk,k′)− r

(
1

4ζ̆rγ
(a3)k(a3)k′ +A

(µ,µ)
k,k′

)
. (A.56)

The last equation is well-defined because ξµ,(k) ≥ ξG > r, where ξG > r holds by assumption. The

optimal strategy, according to (A.14), is therefore

ẋj,t =
∑

k∈{1,2}

ã(k)µ
(k)
j,t − b̃xj,t, (A.57)

where

ã(k) =
1

2ζ̆

1 +A
(x,µ)
k (rγ)−1

ξµ,(k) +
√

1
2ζ̆
(rγΣP + rζ̄ − 2A(x,x)r−1γ−1) + r2

4 + r
2

, (A.58)

b̃ =

√
1

2ζ̆
(rγΣP + rζ̄ − 2A(x,x)r−1γ−1) +

r2

4
− r

2
. (A.59)

On the other hand, using (A.51), we obtain

ã(1)µ
(1)
j,t + ã(2)µ

(2)
j,t =

1− ϕϕ̄

ξ̆
D

ã(1)Ej,t(Gt)−
ϕ(ξ̆

P
+ r)

ξ̆
D
ξ̆
G

ã(2)
(
Ḡj,t − ϕ̄Ej,t(Gt)

)
=

ϕ(ξ̆
P
+ r)

ξ̆
D
ξ̆
G

(
−ã(2)Ḡj,t +

(
1− ϕϕ̄

ϕ

ξ̆
G

ξ̆
P
+ r

ã(1) + ϕ̄ã(2)

)
Ej,t(Gt)

)
.(A.60)

Comparing (A.60) with (A.30) and (A.31), we seek to find (ă, b̆, ϕ) such that (A.53), (A.58), and

(A.59) hold, and

ã(2) = ă,
1− ϕϕ̄

ϕ

ξ̆
G

ξ̆
P
+ r

ã(1) + ϕ̄ã(2) = ă, b̃ = b̆. (A.61)

Now we incorporate that (A
(µ,µ)
k,k′ , A

(x,µ)
k , A(x,x)) actually depend on (a2, a3, a4). We consider the
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following algorithm: (1) set (A
(µ,µ)
k,k′ , A

(x,µ)
k , A(x,x)) as zero, and solve (ã(1), ã(2), b̃, ϕ, ζ̆, ζ̄) from (A.53),

(A.58), (A.59), and (A.61); (2) use the obtained (ϕ, ζ̆, ζ̄) to calculate (A
(µ,µ)
k,k′ , A

(x,µ)
k , A(x,x)), based

on their definitions and equations (A.54) – (A.56); (3) update (A
(µ,µ)
k,k′ , A

(x,µ)
k , A(x,x)) and resolve

(A.53), (A.58), (A.59), and (A.61); (4) iterate the previous two steps. Because |Σµ
k,k′ | ≲ J−1 and

|Σµ,P
k | ≲ J−1, which we establish shortly using Assumption 2, we note that, as long as the solution

satisfies that (a2, a3, a4, ϕ, ζ̆, ζ̄) are all bounded away from zero and infinity, in the lth iteration, the

changes of (a2, a3, a4, ϕ, ζ̆, ζ̄) from the previous iteration are bounded by J−l. Hence the sequences of

(a2, a3, a4, ϕ, ζ̆, ζ̄) obtained in each iteration are Cauchy sequences. Hence the limits of the sequences

exist and solve (A.53) – (A.61). Moreover, step 1 of the algorithm already gives us (ã(1), ã(2), b̃, ϕ, ζ̆, ζ̄)

up to errors of order O(J−1), which we calculate now.

Using ΣP = (σP∗)2, b̃ = b̆, and ζ̄ = b̆ζ̆, and setting A(x,x) as zero, we obtain from (A.59) that

b̆ =

√
1

2ζ̆
rγ(σP∗)2 +

rb̆

2
+
r2

4
− r

2
, =⇒ b̆ =

√
1

2ζ̆
rγ(σP∗)2 +

1

16
r2 − 1

4
r. (A.62)

Next, setting A(x,x) = A
(x,µ)
k = 0, we obtain from (A.53), (A.58), and ã(2) = ă that

Jω

ω + J − 1
(ξ̆

P
+ r)− 2ξ̆

P
=

√
2ζ̆

−1
rγΣP + 2rb̆+ r2 + r = 2b̆+ 2r. (A.63)

Here the last equality comes from the first equation in (A.62). In light of the second equation in

(A.62), we must have b̆ > 0 for the solution of ζ̆ to exist. We obtain the existence condition, b̆, and

ζ̆ as

Jω

ω + J − 1
> 2, b̆ =

1

2

Jω

ω + J − 1
(ξ̆

P
+ r)− ξ̆

P − r, ζ̆ =
1

2

γ(σP∗)2(
b̆+ 1

4r
)2

− 1
16ρ

2

. (A.64)

Note that the price volatility σP∗ can be expressed directly in terms of ϕ and exogenous parameters

via (A.48) and (A.42). Then, from (A.58) it follows

ã(k) =
1

2ζ̆

1

ξµ,(k) + b̆+ r
. (A.65)

Substituting (A.65) into second equation in (A.61), we obtain

ϕ−1 = ϕ̄+ (1− ϕ̄)
ξ̆
P
+ r

ξ̆
G

· ξ
G + b̆+ r

ξ̆
P
+ b̆+ r

. (A.66)

Substituting (A.66) into (A.60), we have

ã(1)µ
(1)
j,t + ã(2)µ

(2)
j,t =

ϕ(ξ̆
P
+ r)

ξ̆
D
ξ̆
G

ă
(
Ej,t(Gt)− Ḡj,t

)
. (A.67)
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To finally verify ã(1)µ
(1)
j,t + ã(2)µ

(2)
j,t = ăµ̃j,t and establish the equilibrium, we derive the expression of

Ej,t(Gt). The signals at the investor’s disposal for learning about Gt are {Sj,s, S̄j,s, SD
s }s≤t (noting

(A.38) and (A.40)), where

dSj,s = ωGsdt+ σSdẐS
j,s, dS̄j,s = Gsdt+

σS√
J − 1

dZ̄S
j,s, dSD

s = Gsdt+ σDdZD
s .

Because ẐS
j,s, Z̄

S
j,s, and ZD

s are mutually independent standard Brownian motions in investor j’s

subjective belief, the standard Kalman-Bucy filtering leads to

Ej,t(Gt) = (ξ̆
P − ξG)

∫ t

−∞
e−ξ̆

P
(t−s)dS̃j,s, (A.68)

where

S̃j,t = (σ̃S)2(ω(σS)−2Sj,t + (J − 1)(σS)−2S̄j,t + (σD)−2SD
t ). (A.69)

Further, applying (A.32), (A.33), and (A.34), and using (A.40), we rewrite (A.68) as

Ej,t(Gt)− Ḡj,t = ω−1θĞj,t +
J − 1

ω + J − 1
(Ḡj,t − θDĞD

t ) + θDĞD
t − Ḡj,t

= ω−1θĞj,t −
ω

ω + J − 1
(Ḡj,t − θDĞD

t ). (A.70)

Substituting (A.70) into (A.67), and in light of (A.38), we further have

ã(1)µ
(1)
j,t + ã(2)µ

(2)
j,t = ă

ϕ(ξ̆
P
+ r)

ξ̆
D
ξ̆
G

(
ω−1θĞj,t −

ω

ω + J − 1

(
ξ̆
D
ξ̆
G

ϕ

(
P̃j,t −

Dt

ξ̆
D

)
− θDĞD

t

))
. (A.71)

On the other hand, it follows from (A.39) and (A.57) that

Pt =
ω + J − 1

Jăω(ξ̆
P
+ r)

(ã(1)µ
(1)
j,t + ã(2)µ

(2)
j,t ) + P̃j,t. (A.72)

Combining (A.71) with (A.72), and noting ă = ã(2) by (A.61), we have

(ã(1)µ
(1)
j,t +ã

(2)µ
(2)
j,t )

(
1− 1

J

)
= ă

ϕ(ξ̆
P
+ r)

ξ̆
D
ξ̆
G

(
ω−1θĞj,t −

ω

ω + J − 1

(
ξ̆
D
ξ̆
G

ϕ

(
Pt −

Dt

ξ̆
D

)
− θDĞD

t

))
.

Comparing with (A.31), we finally obtain

ã(1)µ
(1)
j,t + ã(2)µ

(2)
j,t = ăµ̃j,t. (A.73)

In light of (A.66) and (A.73), we establsh that, when all investor j with j′ ̸= j take the strategy
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(A.30), it is optimal for investor j to take this strategy as well, where

ă =
1

2ζ̆

1

ξ̆
P
+ b̆+ r

+O(J−1), b̆ =
1

2

Jω

ω + J − 1
(ξ̆

P
+ r)− ξ̆

P − r +O(J−1), (A.74)

ζ̆ =
1

2

γ(σP∗)2(
b̆+ 1

4r
)2

− 1
16r

2

+O(J−1), ϕ = ϕ̄+ (1− ϕ̄)
ξ̆
P
+ r

ξ̆
G

· ξ
G + b̆+ r

ξ̆
P
+ b̆+ r

+O(J−1). (A.75)

The O(J−1) terms originate from the argument above (A.62). On the other hand, it directly follows

from (A.74), (A.75), and Assumption 2 that

(σ̃S)−2 = (σD)−2 + ι−2 +O(J−1),

ξ̆
P

=
√
(ξG)2 + (σG)2((σD)−2 + ι−2) +O(J−1) = ξP +O(J−1), (A.76)

b̆ =
1

2
(ξP + r)(ω − 2) +O(J−1) = b+O(J−1), (A.77)

σP∗ =
√

(σD)2(ξD)−2 + (σG)2(ξDξG)−2 +O(J−1) = σP +O(J−1),

ζ̆ =
1

2

γ(σP )2(
b+ 1

4r
)2 − 1

16r
2
+O(J−1) = ζ +O(J−1),

ă =
1

2ζ̆

1

ξ̆
P
+ b̆+ r

+O(J−1) =
1

ζω(ξP + r)
+O(J−1) = a+O(J−1), (A.78)

ϕ =

(
1 + (ω2 − ω)(σ̃S/σS)2

(
ξ̆
P
+ r

ξ̆
G

· ξ
G + b̆+ r

ξ̆
P
+ b̆+ r

− 1

))−1

+O(J−1) = 1 +O(J−1), (A.79)

θ =
ω2(σS)−2

(σD)−2 + ι−2
+O(J−2), (A.80)

θD =
(σD)−2

(σD)−2 + ι−2
+O(J−1), (A.81)

Substituting (A.76), (A.79), (A.80), and (A.81) into (A.70) and (A.51), we obtain |Σµ
k,k′ | ≲ J−1 and

|Σµ,P
k | ≲ J−1. Hence the equilibrium stated in the proposition indeed exists as characterized above.

The equilibrium price follows directly from (A.30) and (A.31) as

Pt =
Dt

ξ̆
D

+
ϕ

ξ̆
D
ξ̆
G

(
θDĞD

t +
(ω + J − 1)

ω2

θ

J

∑
j∈J

Ğj,t

)
. (A.82)

Step 4. We start with property (i). (3.9) is a direct result of Kalman-Bucy filtering. Substituting

(A.76), (A.79), (A.80), and (A.81) into (A.82), we obtain

Pt =
Dt

ξ̆
D

+
1

ξ̆
D
ξ̆
G

1

(σD)−2 + ι−2

(
(σD)−2GD

t + ι−2 1

J

∑
j∈J

Gj,t

)
+OP(J

−1). (A.83)
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Combining (A.83) and (3.9), we obtain (3.8). Given (3.8), property (ii) directly follows if we com-

bining (A.30) and (A.31) with (A.76), (A.77), (A.78), (A.79), and (A.80). The proof ends.

A.3 Proof of Theorem 1

Proof. The proof again uses “conjecture and verify” approach with a structure parallel to the proof

of Theorem 1.

Step 1. We conjecture

ẋj,t = aµ̃j,t − bxj,t, (A.84)

where the process µ̃j,t is given by

µ̃j,t =
ξP + r

ξ̆
D
ξ̆
G
ω−1
j θj

(
Gj,t − λ̄

−1

(
ξ̆
D
ξ̆
G

(
Pt −

Dt

ξ̆
D

)
− θDGD

t

))
, (A.85)

Here ξ̆
D
= ξD + r, ξ̆

G
= ξG + r and parameters (ξP , a, b) and processes (GD

t , Gj,t) are introduced in

the statement of the theorem, whereas parameters (θj , θ
D, λ̄) are defined as follows:

(σ̃S)2 =
1

(σD)−2 + ι̃−1 , θj = (ωj σ̃
S/σSj )

2, θD = (σ̃S/σD)2, λ̄ = (σ̃S)2ι̃−1. (A.86)

Suppose, for all j′ ∈ J with j′ ̸= j, investor j′ submit the above demand schedule. Because the

market clearing condition leads to

ẋj,t = −
∑

j′∈J :j′ ̸=j

ẋj′,t, xj,t = −
∑

j′∈J :j′ ̸=j

xj′,t,

we have

a
∑

j′∈J :j′ ̸=j

µ̃j′,t =
∑

j′∈J :j′ ̸=j

(ẋj′,t + bxj′,t) = −ẋj,t − bxj,t. (A.87)

Given (A.87), it follows from the definition of µ̃j,t that

a
∑

j′∈J :j′ ̸=j

ξP + r

ξ̆
D
ξ̆
G
ω−1
j θj

(
Gj′,t − λ̄

−1

(
ξ̆
D
ξ̆
G

(
Pt −

Dt

ξ̆
D

)
− θDGD

t

))
= −ẋj,t − bxj,t. (A.88)

We introduce λj =
(
ω̃
∑

j′∈J :j′ ̸=j πj′
)−1

and note

∑
j′∈J :j′ ̸=j

ω−1
j θj λ̄

−1
=

∑
j′∈J :j′ ̸=j

ωj(σ
S
j )

−2ι̃ =
∑

j′∈J :j′ ̸=j

πjω̃ = λ−1
j . (A.89)

Then (A.88) directly gives Pt as a function of ({Gj′,t}j′∈J :j′ ̸=j , ẋj,t, xj,t), i.e., the supply curve faced
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by investor j:

Pt =
λj

a(ξP + r)
(ẋj,t + bxj,t) +

Dt

ξ̆
D

+
1

ξ̆
D
ξ̆
G

(
θDGD

t + λj
∑

j′∈J :j′ ̸=j

ωjθjGj′,t

)
.

To facilitate exposition, we introduce

P̃j,t :=
Dt

ξ̆
D

+
G̃j,t

ξ̆
D
ξ̆
G
, with G̃j,t := θDGD

t + λj
∑

j′∈J :j′ ̸=j

ωjθjGj′,t. (A.90)

Then the supply curve can be written as

Pt =
λj

a(ξP + r)
(ẋj,t + bxj,t) + P̃j,t. (A.91)

Step 2. This step focuses on the dynamics of P̃j,t. We start with the dynamics of G̃j,t, introduced

in (A.90). Given the definitions of θD, GD
t , θj , and Gj,t, we have

dG̃j,t + ξP G̃j,tdt

ξP − ξG
= θD(dDt − αGDtdt) + λj

∑
j′∈J :j′ ̸=j

ωjθjdSj,t

= (σ̃S/σD)2(Gtdt+ σDdZD
t ) + λj

∑
j′∈J :j′ ̸=j

ωj′(σ̃
S/σSj′)

2dSj′,t. (A.92)

We note that

(σ̃S/σD)2 + λj
∑

j′∈J :j′ ̸=j

ωj′(σ̃
S/σSj′)

2

= (σ̃S)2(σD)−2 + (σ̃S)2ω̃−1
∑
j′∈J

ωj′(σ
S
j′)

−2 = (σ̃S)2(σD)−2 + (σ̃S)2ι̃−1 = 1. (A.93)

Combining (A.92) and (A.93), we obtain

dG̃j,t + ξP G̃j,tdt

ξP − ξG
= Gtdt+ σ̃G∗

j dZ̃G
j,t, (A.94)

where Z̃G
j,t is a standard Brownian motion and σ̃G∗

j and Z̃G
j,t are defined by

σ̃G∗
j dZ̃G

j,t := (σ̃S)2(σD)−1dZD
t + λj

∑
j′∈J :j′ ̸=j

ωj′(σ̃
S)2(σSj′)

−1dZS
j,t. (A.95)

Rewriting (A.94), we obtain that G̃j,t evolves according to

dG̃j,t = −ξP G̃j,t + (ξP − ξG)Gtdt+ (ξP − ξG)σ̃G∗
j dZ̃G

j,t.
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Using that dGt = −ξGGt + σGdZG
t by definition, we can further write

d(G̃j,t −Gt) = −ξP (G̃j,t −Gt)dt+ (ξP − ξG)σ̃G∗
j dZ̃G

j,t − σGdZG
t . (A.96)

Next, based on the dynamics of G̃j,t, we derive the evolution of P̃j,t. We introduce short-hand

notation

Ft =
Dt

ξ̆
D

+
Gt

ξ̆
D
ξ̆
G
.

Since by definition it holds that

P̃j,t − Ft =
1

ξ̆
D
ξ̆
G
(G̃j,t −Gt), (A.97)

we use (A.96) to obtain

d(P̃j,t − Ft) = −ξP (P̃j,t − Ft)dt+
(ξP − ξG)σ̃G∗

j dZ̃G
j,t − σGdZG

t

ξ̆
D
ξ̆
G

. (A.98)

Moreover, from the dynamics of (Dt, Gt), it follows that Ft satifies

dFt = rFtdt−Dtdt+ σFdZF
t , with σFdZF

t :=
σDdZD

t

ξ̆
D

+
σGdZG

t

ξ̆
D
ξ̆
G
. (A.99)

Combining (A.98) and (A.99), we obtain

dP̃j,t = rP̃j,tdt−Dtdt− (ξP + r)(P̃j,t − Ft)dt+ σP∗
j dZP∗

j,t , (A.100)

where ZP∗
j,t is a standard Brownian motion and (σP∗

j , ZP∗
j,t ) are defined by

σP∗
j dZP∗

j,t :=
σDdZD

t

ξ̆
D

+
(ξP − ξG)σ̃G∗

j dZ̃G
j,t

ξ̆
D
ξ̆
G

. (A.101)

Substituting (A.97) into (A.100), we obtain

dP̃j,t = rP̃j,tdt−Dtdt−
ξP + r

ξ̆
D
ξ̆
G

(G̃j,t −Gt)dt+ σP∗
j dZP∗

j,t . (A.102)

Step 3. In this step, we study the dynamics of µj,t := Ej,t(dP̃j,t)/dt + Dt − rP̃j,t and establish

the equilibrium. Because the investor observes P̃j,t and Dt, she effectively observes G̃j,t according to

(A.90). As a result, it follows from (A.102) that

µj,t := Ej,t(dP̃j,t)/dt+Dt − rP̃j,t = −ξ
P + r

ξ̆
D
ξ̆
G

(
G̃j,t − Ej,t(Gt)

)
, (A.103)
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We can further write

Ej,t

(
dG̃j,t − dEj,t(Gt)

)
= Ej,t(d(G̃j,t −Gt)) = −ξPEj,t(G̃j,t −Gt)dt,

where the first equality comes from Ej,t (dEj,t(Gt)) = Ej,t(dGt) due to the law of interated expecta-

tions. The second equality is a result of (A.96). Substituting this result into (A.103), we obtain

Ej,t(dµj,t) = −ξPµj,tdt. (A.104)

Note that the dynamics of P̃j,t, given by (A.102), (A.103), and (A.104), exactly matches the premises

of Proposition A1 with ξµ,(1) = ξP and µ
(2)
j,t = 0. Moreover, from the definition of (a, b) given by

(4.7) and the definition of λj given after (A.88), it follows that

λj
a(ξP + r)

= λjω̃ζ =
ζ∑

j′∈J :j′ ̸=j πj′
.

Comparing with the supply curve (A.91), we obtain

Pt = P̃j,t + ζj(ẋj,t + bxj,t), with ζj =
ζ∑

j′∈J :j′ ̸=j πj′
.

Then, it directly follows from Proposition A1, (A.54) – (A.59), and the argument after (A.61) that

investor j’s exact optimal trading strategy x∗j,t is given by

ẋ∗j,t = a∗jµj,t − b∗jx
∗
j,t, (A.105)

where

a∗j =
1

2ζj

1

ξP + b∗j + r
+O(J−1), b∗j =

√
1

2ζj
rγ(σP∗

j )2 +
rb

2
+
r2

4
− r

2
+O(J−1). (A.106)

Moreover, it follows from Assumption 3 that

max
j∈J

|ζj − ζ∗| = O(J−1), max
j∈J

|σP∗
j − σP | = O(J−1). (A.107)

Here the second result comes from the fact, which can be obtained by direct calculations, that σP

defined after (4.7) is the volatility of the process

σD

ξ̆
D
ZD
t +

ξP − ξG

ξ̆
D
ξ̆
G

(σ̃S)2

σD
ZD
t +

ξP − ξG

ξ̆
D
ξ̆
G

(σ̃S)2ω̃−1
∑
j∈J

ωj(σ
S
j )

−1ZS
j,t. (A.108)

Given (A.107), and substituting the definitions of b (see (4.7)) into (A.106), we obtain, under the

49



existence condition λ̃i > 2 + 2r/ξPi as stated in the theorem,

max
j∈J

|b∗j − b| = O(J−1). (A.109)

According to Definition 2, to establish the equilibrium, we only need to show the trading strategy

xj,t given by (A.84) satisfies

max
j∈J

Ej((ẋ
∗
j,t − ẋj,t)

2) = O(J−2), and max
j∈J

Ej((x
∗
j,t − xj,t)

2) = O(J−2).

For this purpose, in light of (A.103) and (A.105), we first derive the expression of Ej,t(Gt). We

introduce

S̃j,t = λj
∑

j′∈J :j′ ̸=j

ωjθjdSj,t. (A.110)

Then signals that the investor can access for learning about Gt are {SD
s , Sj,s, S̃j,s, }s≤t (noting (A.90)

and (A.92)), where

dSD
s = Gsdt+ σDdZD

s , dSj,s = ωjGsdt+ σSj dẐ
S
j,s, dS̃j,s = λ̄Gsdt+ σ̃Sj dZ̃

S
j,s.

Here Z̃S
j,s is a standard Brownian motion, and, by the definition of S̃j,s in (A.110), the drift term is

λ̄Gs (using (A.89))and

σ̃Sj = λj(σ̃
S)2
√ ∑

j′∈J :j′ ̸=j

ω2
j′(σ

S
j′)

−2. (A.111)

Because ẐS
j,s, Z̄

S
j,s, and ZD

s are mutually independent standard Brownian motions in investor j’s

belief, the standard Kalman-Bucy filtering leads to

Ej,t(Gt) = (ξ̆
P

j − ξG)

∫ t

−∞
e−ξ̆

P
j (t−s)dS̆j,s, (A.112)

where

S̆j,t = (σ̆Sj )
2((σD)−2SD

t + ωj(σ
S
j )

−2Sj,t + λ̄(σ̃Sj )
−2S̃j,t), (A.113)

σ̆Sj = ((σD)−2 + ω2
j (σ

S
j )

−2 + λ̄
2
(σ̃Sj )

−2)−1/2, (A.114)

ξ̆
P

j =
√

(σG/σ̆Sj )
2 + (ξG)2. (A.115)

Next, we conduct asymptotic analysis on (S̆j,t, σ̆
S
j , ξ̆

P
). Clearly by Assumption 3 we have

λ̄ ≃ 1, max
j∈J

λj ≃ min
j∈J

λj ≃ 1, σ̃S ≃ 1.

(Note z ≃ 1 stands for that z is positive and satisfies z = O(1) and z−1 = O(1).) It follows from
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(A.111), the definition of λj , and Assumption 3 that

max
j∈J

|(σ̃S)4(σ̃Sj )−2 − ι̃| = max
j∈J

∣∣∣∣∣ (λj)
−2∑

j′∈J :j′ ̸=j ω
2
j′(σ

S
j′)

−2
− ι̃

∣∣∣∣∣
= max

j∈J

∣∣∣∣∣ ι̃
2
(∑

j′∈J :j′ ̸=j ωj′(σ
S
j′)

−2
)2

∑
j′∈J :j′ ̸=j ω

2
j′(σ

S
j′)

−2
− ι̃

∣∣∣∣∣ = O(J−1). (A.116)

We can further write

max
j∈J

|(σ̆Sj )−2 − (σ̃S)2| = max
j∈J

|ω2
j (σ

S
j )

−2 + ι̃−2(σ̃S)4(σ̃Sj )
−2 − ι̃−1|

= max
j∈J

|ω2
j (σ

S
j )

−2 + ι̃−2(σ̃S)4(σ̃Sj )
−2 − ι̃−1| = O(J−1). (A.117)

where the first equality holds by (A.114) and the definition of σ̃S in (A.86), the second equality

comes from (A.116) and Assumption 3. It directly follows from (A.115) and (A.117) that

max
j∈J

|ξ̆Pj − ξP | = O(J−1). (A.118)

Moreover, using (A.116) and (A.117), we obtain the following results regarding the coefficients of

(SD
t , Sj,t, S̃j,t) in (A.113):

max
j∈J

|(σ̆Sj )2(σD)−2 − θD| = O(J−1), (A.119)

max
j∈J

|(σ̆Sj )2ωj(σ
S
j )

−2 − ω−1
j θj | = O(J−2), (A.120)

max
j∈J

|(σ̆Sj )2λ̄(σ̃Sj )−2 − 1| = O(J−1). (A.121)

Substituting (A.118) - (A.121) into (A.112) and (A.113), and using the relation between G̃j,t and

(GD
t , S̃j,t) from (A.92) and (A.110), we obtain

max
j∈J

Ej

((
Ej,t(Gt)− ω−1

j θjGj,t − G̃j,t

)2)
= O(J−2). (A.122)

On the other hand, given the supply curve (A.91), submitting demand schedule (A.84) means that

the equilibrium price satisfies

Pt =
Dt

ξ̆
D

+
1

ξ̆
D
ξ̆
G

(
(σ̃S)2(σD)−2GD

t + (σ̃S)2ω̃−1
∑
j∈J

ωj(σ
S
j )

−2Gj,t

)
. (A.123)
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Substituting (A.123) into (A.85), we have

µ̃j,t =
ξP + r

ξ̆
D
ξ̆
G
ω−1
j θj

(
Gj,t − λ̄

−1
ω̃−1ω−1

j θjGj,t − λ̄
−1 1

ω̃λj
(G̃j,t − θDGD

t )

)
.

Then it follows from Assumption 3 that

max
j∈J

Ej

((
µ̃j,t −

ξP + r

ξ̆
D
ξ̆
G
ω−1
j θjGj,t

)2
)

= O(J−2). (A.124)

Combining (A.122), (A.124), and (A.103), we obtain

max
j∈J

Ej((µ̃j,t − µj,t)
2) = O(J−2). (A.125)

On the other hand, from (A.84) and (A.105) it follows that

x∗j,t = a∗j

∫ t

−∞
e−b∗j (t−s)µj,sds, xj,t =

1

2ζ

1

ξP + b+ r

∫ t

−∞
e−b(t−s)µ̃j,sds.

Then, using (A.107), (A.109), and (A.125), we obtain

max
j∈J

Ej((xj,t − x∗j,t)
2) = O(J−2). (A.126)

Combining (A.126) with (A.84) and (A.105), and again using (A.107), (A.109), and (A.125), we have

max
j∈J

Ej((ẋj,t − ẋ∗j,t)
2) = O(J−2). (A.127)

With (A.126) and (A.127), the equilibrium is established.

Step 4. In this step we prove the properties stated in the theorem. (4.5) is a direct result of

Kalman-Bucy filtering. Moreover, because ω̃−1∑
j∈J ωj(σ

S
j )

−2 = ι̃−1 by definition, it follows from

(A.123) that the equilibrium price satisfies (4.4). Substituting (4.4) and (4.5) into (A.85), we obtain

µ̃j,t =
ξP + r

ξ̆
D
ξ̆
G
ω−1
j θj

(
Gj,t − λ̄

−1 ι−1Ḡt

(σD)−2 + ι−1

)
=
ξP + r

ξ̆
D
ξ̆
G
ω−1
j θj(Gj,t − Ḡt),

hence (4.6) is also verified. Finally, comparing (A.123) with (A.108), we have that σP is indeed the

volatility of Pt in equilibrium. The proof ends.
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